Le but de cette étude est d'améliorer les performances, en termes d'espace mémoire et de temps de calcul, des simulations actuelles de l'Interaction mécanique Pastille-Gaine (IPG), phénomène complexe pouvant avoir lieu lors de fortes montées en puissance dans les réacteurs à eau sous pression. Parmi les méthodes de raffinement de maillage, méthodes permettant de simuler efficacement des singularités locales, une approche multi-grille locale a été choisie car elle présente l'intérêt de pouvoir utiliser le solveur en boîte noire tout en ayant un faible nombre de degrés de liberté à traiter par niveau. La méthode Local Defect Correction (LDC), adaptée à une discrétisation de type éléments finis, a tout d'abord été analysée et vérifiée en élasticité linéaire, sur des configurations issues de l'IPG, car son utilisation en mécanique des solides est peu répandue. Différentes stratégies concernant la mise en oeuvre pratique de l'algorithme multi-niveaux ont également été comparées. La combinaison de la méthode LDC et de l'estimateur d'erreur a posteriori de Zienkiewicz-Zhu, permettant d'automatiser la détection des zones à raffiner, a ensuite été testée. Les performances obtenues sur des cas bidimensionnels et tridimensionnels sont très satisfaisantes, l'algorithme proposé se montrant plus performant que des méthodes de raffinement h-adaptatives. Enfin, l'algorithme a été étendu à des problèmes mécaniques non linéaires. Les questions d'un raffinement espace/temps mais aussi de la transmission des conditions initiales lors du remaillage ont entre autres été abordées. Les premiers résultats obtenus sont encourageants et démontrent l'intérêt de la méthode LDC pour des calculs d'IPG. / The aim of this study is to improve the performances, in terms of memory space and computational time, of the current modelling of the Pellet-Cladding mechanical Interaction (PCI),complex phenomenon which may occurs during high power rises in pressurised water reactors. Among the mesh refinement methods - methods dedicated to efficiently treat local singularities - a local multi-grid approach was selected because it enables the use of a black-box solver while dealing few degrees of freedom at each level. The Local Defect Correction (LDC) method, well suited to a finite element discretisation, was first analysed and checked in linear elasticity, on configurations resulting from the PCI, since its use in solid mechanics is little widespread. Various strategies concerning the implementation of the multilevel algorithm were also compared. Coupling the LDC method with the Zienkiewicz-Zhu a posteriori error estimator in orderto automatically detect the zones to be refined, was then tested. Performances obtained on two-dimensional and three-dimensional cases are very satisfactory, since the algorithm proposed is more efficient than h-adaptive refinement methods. Lastly, the LDC algorithm was extended to nonlinear mechanics. Space/time refinement as well as transmission of the initial conditions during the remeshing step were looked at. The first results obtained are encouraging and show the interest of using the LDC method for PCI modelling.
Identifer | oai:union.ndltd.org:theses.fr/2013AIXM4742 |
Date | 03 October 2013 |
Creators | Barbié, Laureline |
Contributors | Aix-Marseille, Lebon, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds