隨著科技的進步以及網際網路的普及,影像資訊的傳遞已經漸漸取代文字的表達,人們對於影像的需求也越來越多元,使得影像處理技術以及影像資訊分析也就越來越重要。然而,影像中其中一項重要的資訊為特徵描述子,強而有力的描述子能使得影像在辨識、分類等應用上有較佳的回饋,描述子的建構方式根據編碼原則分為:基於區域梯度統計、基於點對關係以及基於點群關係。其中,基於點群關係的編碼方式因為點群的選取及排序過程中,可能會產生過多的關係表示方法數,以至於不利於計算,因此過去較少有利用點群關係的編碼方式所建構而成的特徵描述子。
本論文提出描述子建構方式-LIOR,是以點群排序關係為基礎的編碼方式,相較於LIOP方法隨著點群內的點數增加,元素關係數大幅度的成長,造成描述子維度過大,計算時間和空間皆可能需要大量的消耗,而本研究方法足以改善計算維度的問題,重新定義點群關係的排名機制,並以像素值為基準加入權重分配,以區別加權排序之間不同大小差值所造成的影響程度。
實驗結果顯示本研究方法對於不同影像劣化效果的資料集,不僅能提升選取多點為一群的影像比對評估效能,同時也能改善點群內元素關係過多的排名表示法,降低以多點為群集的特徵描述子維度,節省了影像比對的計算時間以及空間,仍可維持整體影像配對之效能。
Identifer | oai:union.ndltd.org:CHENGCHI/G0102753010 |
Creators | 吳家禎, Wu,Chia Chen |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | Unknown |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0083 seconds