Cette thèse porte sur le développement d’un modèle numérique de l’affouillement causée par des obstacles montes sur le lit, combinant les processus hydrodynamiques et morphologiques. Le modèle numérique est basé sur le solveur de champ d’écoulement polyphasique de l’outil CFD open-source OpenFOAMR qui est distribue par OpenCFD Ltd. Le module hydrodynamique du modèle résout les équations de Navier-Stokes avec moyennes de Reynolds (RANS) et les modèles des turbulences k-ε ou k-ω. Il existe deux interfaces dans le domaine de simulation: la surface libre entre l’eau et l’air, qui est suivi par la méthode de Volume de Fluide (VOF); et l’interface entre l’eau et le lit du sédiment, qui est représentée par un maillage de surface finie déformable construit à partir de la limite en bas du maillage de volume fini. En outre, un module morphologique qui a été développé dans le cadre du projet se compose de trois composantes: un modèle de transport de sédiments comprenant la charge suspendue et le charriage; l’équation d’Exner pour mesurer la déformation du lit; et un mécanisme de glissement du sable pour limiter la pente du lit à être plus petite que l’angle de repos du sédiment. Le changement morphologique est incorporé dans le modèle hydrodynamique par la déformation du maillage. Des conditions limites spéciales et des corrections nécessaires pour le calcul en parallèle sont également ajoutées au modèle. Chaque partie du modèle est validée séparément avec les tests préliminaires correspondants, y compris les fonctions de paroi rugueuse, les performances de la méthode VOF, le modèle de transport de charge suspendu et le mécanisme de glissement de sable. Le modèle numérique est ensuite appliqué pour étudier un affouillent bidimensionnelle cause par un jet immerge provenant d’une ouverture sous écluse. Comparaison des résultats de la simulation avec des données expérimentales prouve la capacité du modèle. Et les limites du modèle sont également discutées. Enfin, le modèle est appliqué à l’étude du champ d’écoulement tridimensionnel et de la formation d’affouillement autour d’un obstacle dans l’écoulement. Tout d’abord, la déformation du lit n’est pas activée. Le tourbillon en fer à cheval devant un obstacle et le champ d’écoulement turbulent autour d’un cylindre sur un lit lisse ou rugueux sont simulés. Deux types de simulation pour le module hydrodynamique sont effectués: une simulation qui utilise une surface fixe et rigide pour représenter l’interface air-eau, et une simulation incluant à la fois les domaines de l’eau et de l’air avec la surface libre suivie par la méthode VOF. Les influences de la surface libre sur le champ d’écoulement sont identifiées et discutées. La comparaison avec les données expérimentales confirme l’importance de la déformation de la surface libre sur le champ d’écoulement. Ensuite, le lit est autorisé à se déformer et le développement temporel de l’affouillement tridimensionnelle autour d’un cylindre sur le lit est simule. Le développement temporel d’affouillement et la profondeur maximale du trou calcule devant et derrière le cylindre conviennent assez bien avec les mesures expérimentales. Les influences de l’affouillement sur le champ d’écoulement sont aussi étudiées et la performance du modèle numérique développé est discutée. / This thesis describes the development of a numerical model for local scour caused by bed-mounted obstacles, combining the hydrodynamic and morphological processes. The basis of the numerical model is the multiphase flow field solver in the open-source CFD toolbox OpenFOAMR which is released by OpenCFD Ltd. The hydrodynamic module of the model solves the Reynolds Averaged Navier-Stokes (RANS) equations with either a k-ε or a k-ω model. There are two interfaces in the simulation domain: the free surface between water and air, which is tracked using the Volume of Fluid (VOF) method, and the interface between the water and the sediment, which is represented by a finite area mesh constructed from the bottom boundary of the finite volume mesh. A morphological module which has been developed as part of the project consists of three components: a sediment transport model which includes suspended load and bed load transport; the Exner equation to compute the bed deformation, and a sand-sliding mechanism to restrict the bed slope angle to be smaller than the angle of repose. The morphological changes are incorporated into the hydrodynamic field through deformation of the computational mesh. Additional boundary conditions and parallel computing corrections are also added into the model. Each individual part of the model has been validated separately with corresponding preliminary test cases including the rough wall functions, the performance of the VOF method, the suspended load transport model and the sand-sliding mechanism. The numerical model is then applied to study two-dimensional scour caused by a submerged jet issuing from an opening under sluice gate. Comparison of the simulation results with the experimental measurements proves the ability of the model for conducting two-dimensional simulations and the limitations of the model are also discussed. Finally, the model is applied to study the three-dimensional flow field and scour formation around an obstacle in flow. Initially, the bed deformation is not activated in the model. The horseshoe vortex formed in front of an obstacle in water and the turbulent flow field around a cylinder on smooth and rough beds are simulated. Two types of simulations for the hydrodynamic module are used: a rigid lid simulation with a slip boundary condition to represent the air-water interface, and a free surface simulation including both the water and air domains with the free surface tracked by the VOF method. The influences of the variation of the water depth on the flow field are identified and discussed. Comparison with the experimental data also confirms the importance of the water surface variation on the flow field. Next, the bed is allowed to deform in the model. The temporal development of three-dimensional scour around a cylinder on live-bed in a steady current is simulated. The development of the scour with time and the computed maximum scour depths in front of and behind the cylinder agree quite well with the experimental measurements. The influences of the scour process on the flow field are also studied and the performance of the numerical model is discussed.
Identifer | oai:union.ndltd.org:theses.fr/2017LYSEC015 |
Date | 03 May 2017 |
Creators | Zhou, Lu |
Contributors | Lyon, Perkins, Richard |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds