A rejection algorithm - called transformed density rejection - that uses a new method for constructing simple hat functions for an unimodal, bounded density $f$ is introduced. It is based on the idea to transform $f$ with a suitable transformation $T$ such that $T(f(x))$ is concave. $f$ is then called $T$-concave and tangents of $T(f(x))$ in the mode and in a point on the left and right side are used to construct a hat function with table-mountain shape. It is possible to give conditions for the optimal choice of these points of contact. With $T=-1/\sqrt(x)$ the method can be used to construct a universal algorithm that is applicable to a large class of unimodal distributions including the normal, beta, gamma and t-distribution. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
Identifer | oai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_8c7 |
Date | January 1994 |
Creators | Hörmann, Wolfgang |
Publisher | Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business |
Source Sets | Wirtschaftsuniversität Wien |
Language | English |
Detected Language | English |
Type | Paper, NonPeerReviewed |
Format | application/pdf |
Relation | http://doi.acm.org/10.1145/203082.203089, http://epub.wu.ac.at/1028/ |
Page generated in 0.0019 seconds