Return to search

The complexity of constraint satisfaction problems and symmetric Datalog /

Constraint satisfaction problems (CSPs) provide a unified framework for studying a wide variety of computational problems naturally arising in combinatorics, artificial intelligence and database theory. To any finite domain D and any constraint language Γ (a finite set of relations over D), we associate the constraint satisfaction problem CSP(Γ): an instance of CSP(Γ) consists of a list of variables x1, x2,..., x n and a list of constraints of the form "(x 7, x2,..., x5) ∈ R" for some relation R in Γ. The goal is to determine whether the variables can be assigned values in D such that all constraints are simultaneously satisfied. The computational complexity of CSP(Γ) is entirely determined by the structure of the constraint language Γ and, thus, one wishes to identify classes of Γ such that CSP(Γ) belongs to a particular complexity class. / In recent years, logical and algebraic perspectives have been particularly successful in classifying CSPs. A major weapon in the arsenal of the logical perspective is the database-theory-inspired logic programming language called Datalog. A Datalog program can be used to solve a restricted class of CSPs by either accepting or rejecting a (suitably encoded) set of input constraints. Inspired by Dalmau's work on linear Datalog and Reingold's breakthrough that undirected graph connectivity is in logarithmic space, we use a new restriction of Datalog called symmetric Datalog to identify a class of CSPs solvable in logarithmic space. We establish that expressibility in symmetric Datalog is equivalent to expressibility in a specific restriction of second order logic called Symmetric Restricted Krom Monotone SNP that has already received attention for its close relationship with logarithmic space. / We also give a combinatorial description of a large class of CSPs lying in L by showing that they are definable in symmetric Datalog. The main result of this thesis is that directed st-connectivity and a closely related CSP cannot be defined in symmetric Datalog. Because undirected st-connectivity can be defined in symmetric Datalog, this result also sheds new light on the computational differences between the undirected and directed st-connectivity problems.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.101843
Date January 2007
CreatorsEgri, László.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (School of Computer Science.)
Rights© László Egri, 2007
Relationalephsysno: 002666931, proquestno: AAIMR38394, Theses scanned by UMI/ProQuest.

Page generated in 0.0028 seconds