Return to search

Perron–Frobenius theorem and Z≥0[S3]-semimodules

In this thesis, the Perron–Frobenius theorem which in its most general formstates that the spectral radius of a non-negative real square matrix is an eigenvaluewith a non-negative eigenvector, is proven. Related properties arederived, in particular the Collatz–Wielandt formula and a general form of anon-negative idempotent matrices. Furthermore, let Rn be the sub-semi-ringof Z≥0[Sn] generated by the Kazhdan–Lusztig basis. a description of R2-semimodules,R3-semi-modules and a classification of elementary R3-semi-modulesis given.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-488523
Date January 2022
CreatorsCuszynski-Kruk, Mikolaj
PublisherUppsala universitet, Algebra, logik och representationsteori
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationU.U.D.M. project report ; 2022:37

Page generated in 0.0017 seconds