Return to search

Dealing with measurement error in covariates with special reference to logistic regression model: a flexible parametric approach

In many fields of statistical application the fundamental task is to quantify the association between some explanatory variables or covariates and a response or outcome variable through a suitable regression model. The accuracy of such quantification depends on how precisely we measure the relevant covariates. In many instances, we can not measure some of the covariates accurately, rather we can measure noisy versions of them. In statistical terminology this is known as measurement errors or errors in variables. Regression analyses based on noisy covariate measurements lead to biased and inaccurate inference about the true underlying response-covariate associations.
In this thesis we investigate some aspects of measurement error modelling in the case of binary logistic regression models. We suggest a flexible parametric approach for adjusting the measurement error bias while estimating the response-covariate relationship through logistic regression model. We investigate the performance of the proposed flexible parametric approach in comparison with the other flexible parametric and nonparametric approaches through extensive simulation studies. We also compare the proposed method with the other competitive methods with respect to a real-life data set. Though emphasis is put on the logistic regression model the proposed method is applicable to the other members of the generalized linear models, and other types of non-linear regression models too. Finally, we develop a new computational technique to approximate the large sample bias that my arise due to exposure model misspecification in the estimation of the regression parameters in a measurement error scenario. / Science, Faculty of / Statistics, Department of / Graduate

  1. http://hdl.handle.net/2429/408
Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/408
Date05 1900
CreatorsHossain, Shahadut
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
Format6485655 bytes, application/pdf
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0023 seconds