Return to search

Dynamic Testing and Finite Element Modeling of a Steel Girder Bridge for the Long-Term Bridge Performance Program

The majority of the bridges in the United States are already reaching the years that the design process took into account when determining the time the structure would be functional. This means that many of the bridges in the nation are in need of increasing maintenance, and in some cases, major retrofitting. Researchers at Utah State University in conjunction with the Long-Term Bridge Performance (LTBP) Program, under the direction of the Federal Highway Administration’s (FHWA’s) Office of Infrastructure Research and Development, directed dynamic testing on the New Jersey Pilot Bridge, structure number 1618-150. The purpose of the LTBP Program is to monitor the nation’s highway bridges for a 20-year period to analyze and understand the behavior over time of the selected bridges and then promote the safety, mobility, longevity, and reliability on those bridges. In order to perform the monitoring of the bridge, ambient vibration analysis was selected for this structure, which was instrumented with an array of velocity transducers to record the response coming from the excitation. A finite element model was also created to compare the results from the ambient vibration testing. The results of this testing will be used with the LTBP Program to improve the knowledge of the bridge performance and foster the next generation of bridges and bridge management in the nation.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2229
Date01 May 2012
CreatorsTaveras Moronta, Lourdes Alina
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0023 seconds