The dynamic structural equation modeling (DSEM) framework incorporates hierarchical latent modeling (HLM), structural equation modeling (SEM), time series analysis (TSA), and time-varying effects modeling (TVEM) to model the dynamic relationship between latent and observed variables. To model the functional relationships between variables, a Gaussian process (GP), by definition of its covariance function(s), allows researchers to define Gaussian distributions over functions of input variables. Therefore, by incorporating GPs to model the presence of significant trend in either latent or observed variables, this dissertation explores the adequacy and performance of GPs in manipulated conditions of sample size using the flexible Bayesian analysis approach. The overall results of these Monte Carlo simulation studies showcase the ability of the multi-output GPs to properly explore the presence of trends. Also, in modeling intensive longitudinal data, GPs can be specified to properly account for trends, without generating significantly biased and imprecise estimates.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-3035 |
Date | 01 May 2022 |
Creators | Ziedzor, Reginald |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations |
Page generated in 0.0067 seconds