A burner is very important device in process furnaces that significantly affect the production of emissions during the combustion process. One of the key things in development of the modern low-NOX burners is the evaluation of flow field downstream of an axial blade swirler inside the burner. The computational fluid dynamics (CFD) is often used to predict the attributes of the flow. Predicted values should be validated with measurement. It is the reason why the velocity fields for several choosen swirlers were measured. The hot wire anemometry was choosen and the dual-sensor probe was used during the measurement. The data can be then used for CFD validation. This thesis describes procedure of measurement set-up. The experimental facility was designed according to the anemometry method. The new probe traversing system was designed, which provides desired accuracy. Five different swirlers were measured. Large data set, need for customized post-processing and control over calculation procedures lead to new software design. For each swirler the velocity profiles were gathered and the swirl numbers calculated. That final data were transferred in to graphical format. Uncertainty of measured data was calculated. Results show counter-rotating flow in some areas closed to the swirler. Some drawbacks of current measurement set-up are discussed. Based on the thesis reader can obtain the information and knowledge for consequent measurements of swirl burners velocity profiles.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:232121 |
Date | January 2015 |
Creators | Zejda, Vojtěch |
Contributors | Hájek, Jiří, Vondál, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds