Return to search

Hydrogen cryosorption of micro-structured carbon materials

In comparison with the high-pressure adsorption at room temperature, hydrogen adsorption at cryogenic temperatures can be significantly improved at low pressures, which has great potential for prospective mobile applications. In this study, a differential pressure based manometry system was designed and constructed for fast analysing hydrogen adsorption uptakes of sorbents up to a maximum of 10 wt% at 77 K and up to 11 bar. The safety design of the system in compliance with European ATEX directives (Zone 2) for explosive atmospheres was discussed in detail, together with additional pneumatic systems for remote control of the experiments. A thorough error analysis of related experimental tests was also performed. Common carbon sorbents, including several Norit branded activated carbons and graphene nanoplatelets (GNPs) with various surface areas, were characterised for their pore structures. The structural differences among GPNs of different surface areas were also studied. The hydrogen adsorption isotherms of these sorbents, examined in the newly-built manometry system, were further analysed and discussed with reference to the assessed microstructural properties. The carbonisation processes of plasma carbons from the microwave splitting of methane, and biochars from the pyrolysis of Miscanthus, were intensively studied primarily based on Raman spectroscopy, in conjunction with other characterisation techniques such as XRD, FTIR and XPS, for exploring the formation of graphitic structures and crystallinity under various conditions. Two selected types of carbons, the activated carbon AC Norit GSX with a specific surface areas of 875 m2/g and the graphene nanoplates with a specific surface area of 700 m2/g, were decorated with palladium nanoparticles in different compositions. The growth and distribution of doped palladium particles in the carbon substrates were studied, and their effects on porous properties and microstructures of the sorbents were also reviewed. Hydrogen adsorption tests of the decorated carbons were further conducted and discussed, to explore the potential effects of Pd contents on the adsorption kinetics and hydrogen absolute uptakes.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:725624
Date January 2017
CreatorsTeng, Xiao
ContributorsGlowacki, Bartek
PublisherUniversity of Cambridge
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.repository.cam.ac.uk/handle/1810/268017

Page generated in 0.0017 seconds