This thesis proposes a continuous low-thrust guidance and control strategy for satellite formation-flying. Stabilizing feedback based on mean relative orbit elements and Lyapunov theory is used. A novel feedback gain matrix inspired by the fuel-optimal impulsive solution is designed to achieve near-optimal fuel consumption. A reference governor is developed to autonomously guide the spacecraft through the relative state-space in order to allow for arbitrarily constrained satellite formations. Constraints include desired thrust levels, time constraints, passive collision avoidance and locally constrained state-space areas. Keplerian dynamics are leveraged to further decrease fuel consumption. Simulations show fuel consumptions of only 4% higher delta-v than the fuel-optimal impulsive solution. The proposed control and guidance strategy is tested in a high-fidelity orbit propagation simulation using MATLAB/Simulink. Numerical simulations include orbit perturbations such as atmospheric drag, high-order geopotential, solar radiation pressure and third-body (Moon and Sun) effects. Test cases include reconfiguration scenarios with imposed wall, thrust and time constraints and a formation maintenance experiment as flown by TanDEM-X, the TanDEM-X Autonomous Formation-Flying (TAFF) experiment.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-61599 |
Date | January 2017 |
Creators | Steindorf, Lukas |
Publisher | Luleå tekniska universitet, Institutionen för system- och rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds