Cheung Ho Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 164-175). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.vi / Publications based on the work in this thesis --- p.vii / Table of content --- p.viii / Abbreviations --- p.xii / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Traditional Chinese Medicine --- p.1 / Chapter 1.1.1 --- Danshen --- p.2 / Chapter 1.1.2 --- Chemical constituents --- p.5 / Chapter 1.1.3 --- Pharmacological effects --- p.7 / Chapter 1.1.3.1 --- On blood vessels --- p.7 / Chapter 1.1.3.2 --- On blood pressure --- p.8 / Chapter 1.1.3.3 --- On heart --- p.8 / Chapter 1.1.3.4 --- On myocardial ischaemia and reperfusion --- p.9 / Chapter 1.1.3.5 --- On platelet activity --- p.10 / Chapter 1.1.3.6 --- Other actions --- p.11 / Chapter 1.1.4 --- Clinical studies --- p.12 / Chapter 1.2 --- The Vascular System --- p.13 / Chapter 1.2.1 --- The circulation network --- p.13 / Chapter 1.2.2 --- Physiology of blood vessels --- p.13 / Chapter 1.2.3 --- Control of vascular lone --- p.14 / Chapter 1.3 --- Mechanisms of Vasodilatation --- p.16 / Chapter 1.3.1 --- Endothelium derived relaxant factors (EDRFs) --- p.16 / Chapter 1.3.1.1 --- Nitric oxide (NO) --- p.16 / Chapter 1.3.1.2 --- Prostacyclin (PGI:) --- p.17 / Chapter 1.3.1.3 --- Endotheliun-derived hyperpolarization factors (EDHFs) --- p.18 / Chapter 1.3.1.3.1 --- Epoxyeicosatrienoic acids (EETs) --- p.19 / Chapter 1.3.1.3.2 --- Potassium ion (IC) --- p.20 / Chapter 1.3.1.3.3 --- Gap junction --- p.20 / Chapter 1.3.2 --- Signal transduction pathways --- p.21 / Chapter 1.3.2.1 --- Guanylyl cyclase-cGMP pathway --- p.21 / Chapter 1.3.2.2 --- Adenylyl cyclase-cAMP pathway --- p.22 / Chapter 1.3.3 --- Ion channels in vascular smooth muscle cell --- p.24 / Chapter 1.3.3.1 --- Potassium channels (K+ channels) --- p.24 / Chapter 1.3.3.2 --- Calcium channels (Ca2+ channels) --- p.24 / Chapter 1.3.3.3 --- Chloride channel (Cl channel) --- p.25 / Chapter 1.3.4 --- Receptor-operated mechanisms --- p.27 / Chapter 1.3.4.1 --- Muscarinic receptors --- p.27 / Chapter 1.3.4.2 --- Adrenoceptors --- p.27 / Chapter 1.3.4.3 --- Histamine receptors --- p.28 / Chapter 1.3.4.4 --- CGRP receptors --- p.29 / Chapter 1.3.4.5 --- Tachykinin receptors --- p.30 / Chapter 1.4 --- Aims of the studies --- p.31 / Chapter CHAPTER 2 --- MATERIALS AND METHODS --- p.32 / Chapter 2.1 --- Extraction of Water and Lipid-solubie Fractions from Danshen --- p.32 / Chapter 2.1.1 --- Preparation of water-soluble and lipid-soluble fractions --- p.33 / Chapter 2.2 --- Experiments on Rat Knee Joint --- p.35 / Chapter 2.2.1 --- Animals --- p.35 / Chapter 2.2.2 --- Materials --- p.35 / Chapter 2.2.3 --- Preparatory protocols --- p.37 / Chapter 2.2.3.1 --- Anaesthesia of animals --- p.37 / Chapter 2.2.3.2 --- Cannulation of trachea --- p.37 / Chapter 2.2.3.3 --- Cannulation of carotid artery --- p.38 / Chapter 2.2.3.4 --- Blood pressure measurement --- p.38 / Chapter 2.2.4 --- Measurement of knee joint blood flow --- p.39 / Chapter 2.2.4.1 --- Preparation for measurement of knee joint blood flow --- p.41 / Chapter 2.2.5 --- Experimental protocols --- p.41 / Chapter 2.2.5.1 --- Danshen on knee joint blood flow --- p.41 / Chapter 2.2.5.2 --- Antagonists on Danshen --- p.41 / Chapter 2.2.5.3 --- Positive controls --- p.43 / Chapter 2.2.6 --- Image analysis --- p.44 / Chapter 2.2.7 --- Data analysis --- p.44 / Chapter 2.3 --- Experiments on Rat Femoral Artery --- p.45 / Chapter 2.3.1 --- Animals --- p.45 / Chapter 2.3.2 --- Materials --- p.45 / Chapter 2.3.2.1 --- Chemicals --- p.45 / Chapter 2.3.2.2 --- Physiological salt solution --- p.48 / Chapter 2.3.3 --- Preparatory protocols --- p.48 / Chapter 2.3.3.1 --- Small vessel myograph --- p.48 / Chapter 2.3.3.2 --- Isolation and mounting of tissue --- p.49 / Chapter 2.3.4 --- Experimental protocols --- p.50 / Chapter 2.3.4.1 --- Studies on the vasodilator response to Danshen --- p.50 / Chapter 2.3.4.2 --- Studies of antagonists on Danshen --- p.50 / Chapter 2.3.4.2.1 --- Endothelium-dependent mechanisms --- p.51 / Chapter 2.3.4.2.2 --- Endothelium-independent mechanisms --- p.54 / Chapter 2.3.4.2.3 --- K+ channel blockers --- p.54 / Chapter 2.3.4.2.4 --- Positive controls --- p.55 / Chapter 2.3.4.3 --- Danshen on Ca2+-induced contraction --- p.56 / Chapter 2.3.5 --- Data analysis --- p.57 / Chapter CHAPTER 3 --- RESULTS --- p.58 / Chapter 3.1 --- Danshen on Rat Knee Joint Blood Flow --- p.58 / Chapter 3.1.1 --- Topical administration of Danshen --- p.58 / Chapter 3.1.2 --- Antagonists on Danshen --- p.59 / Chapter 3.1.2.1 --- Muscarinic receptor antagonist --- p.59 / Chapter 3.1.2.2 --- β-adrenoceptor antagonist --- p.60 / Chapter 3.1.2.3 --- Histamine receptor antagonists --- p.60 / Chapter 3.1.2.4 --- Nitric oxide synthase inhibitor --- p.61 / Chapter 3.1.2.5 --- Cyclo-oxygenase inhibitors --- p.62 / Chapter 3.1.2.6 --- CGRPi receptor antagonist --- p.62 / Chapter 3.1.2.7 --- NK1 receptor antagonist --- p.63 / Chapter 3.1.2.8 --- Potassium channel inhibitor --- p.64 / Chapter 3.1.2.9 --- "Combination of cyclo-oxygenase inhibitor, nitric oxide synthase inhibitor and CGRP1 receptor antagonist" --- p.64 / Chapter 3.1.3 --- Antagonists on water-soluble fraction of Danshen --- p.91 / Chapter 3.1.3.1 --- Nitric oxide synthase inhibitor --- p.91 / Chapter 3.1.3.2 --- Cyclo-oxygenase inhibitors --- p.91 / Chapter 3.1.3.3 --- CGRP1 receptor antagonist --- p.92 / Chapter 3.1.3.4 --- NK1 receptor antagonist --- p.92 / Chapter 3.1.3.5 --- Potassium channel inhibitor --- p.92 / Chapter 3.2 --- Danshen on Rat Femoral Artery --- p.99 / Chapter 3.2.1 --- Danshen on precontracted arterial ring --- p.99 / Chapter 3.2.2 --- Endothelium-dependent mechanisms --- p.106 / Chapter 3.2.3 --- Endothelium-independent mechanisms --- p.114 / Chapter 3.2.4 --- K+ channel blockers --- p.119 / Chapter 3.2.4.1 --- Effect on Danshen --- p.119 / Chapter 3.2.4.2 --- Effect on water-soluble and lipid-soluble fractions of Danshen --- p.121 / Chapter 3.2.4.3 --- Effect on Danshensu --- p.122 / Chapter 3.2.5 --- Danshen on Ca2+-induced contractions --- p.133 / Chapter CHAPTER 4 --- DISCUSSION --- p.138 / Chapter 4.1 --- In Vivo Studies of Danshen on Rat Knee Joint Blood Flow --- p.139 / Chapter 4.2 --- In Vitro Studies of Danshen on Isolated Rat Femoral Artery --- p.148 / Chapter 4.2.1 --- Comparisons of the use of different precontractors --- p.148 / Chapter 4.2.2 --- Investigations on endothelium-dependent mechanisms --- p.151 / Chapter 4.2.3 --- Investigations on endothelium-independent mechanisms --- p.152 / Chapter 4.2.4 --- Effects of K+ channel blockers --- p.154 / Chapter 4.2.5 --- Inhibition of Ca2+ influx in vascular smooth muscle --- p.157 / Chapter 4.3 --- Comparisons of Results from In Vivo and In Vitro Studies --- p.159 / Chapter 4.4 --- Future Studies --- p.161 / Chapter 4.5 --- Conclusion --- p.162 / REFERENCES --- p.164
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325111 |
Date | January 2005 |
Contributors | Cheung, Ho Yan., Chinese University of Hong Kong Graduate School. Division of Pharmacology. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xii, 175 leaves : ill. (some col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0027 seconds