Return to search

Modélisation multi-échelles des mécanismes de nucléation/croissance lors de la synthèse de nanoplots de silicium par LPCVD pour les nouvelles générations de mémoires non volatiles / Multiscale modeling of nucleation and growth mechanisms during silicon nanodots LPCVD synthesis for new generation of non volatile memory

L'industrie de la microélectronique est en perpétuelle évolution, surtout concernant la diminution des dimensions des composants. Ainsi, pour les nouvelles générations de mémoires non volatiles Flash, le poly-silicium de la grille flottante pourrait être remplacé par des nanoplots discrets de silicium. L'élaboration de ces nanoplots par LPCVD (Low Pressure Chemical Vapor Deposition) à partir de silane SiH4 sur un substrat amorphe SiO2 demeure l'une des voies privilégiées par l'industrie. Le fonctionnement de ce type de mémoires est fortement dépendant des conditions de synthèse des nanoplots de silicium. Ce travail de cette thèse visait donc à améliorer la compréhension des mécanismes de nucléation et de croissance en jeu. Nous avons étudié les premiers instants de la nucléation en chimie quantique, grâce à l'utilisation de la théorie DFT, en considérant l'oxyde de silicium comme surface de dépôt. Des lois cinétiques intrinsèques ont été tirées de ces résultats DFT et elles ont été implémentées dans un modèle de simulation à l'échelle du procédé industriel, sur la base du code de CFD Fluent. Pour la nucléation, il est apparu que seul le silylène, SiH2, peut se chimisorber à la surface du substrat. De plus, sa faible concentration et la première désorption de H2, qui est très lente, expliquent le temps d'incubation. Pour la croissance, le caractère auto-catalytique des dépôts a été expliqué par la contribution très forte du silane au dépôt dès la seconde chimisorption. L'étape limitant la croissance est clairement la désorption de H2. La réalisation d'essais expérimentaux et la comparaison avec le modèle multi-échelles issu de notre travail a permis d'expliquer pourquoi les cinétiques classiques de la littérature surestiment la vitesse de dépôt des nanoplots. Il est aussi apparu que la vitesse de dépôt du silicium sur des nanoplots en croissance est plus forte que celle d'un film de silicium continu « épais ». La prise en compte des sites de chimisorption lors des premiers instants et la description détaillée de la désorption de H2 sont des paramètres clés pour rendre compte du comportement des dépôts de nanoplots de silicium. / The need of high integrated systems of the everyday life involves a permanent evolution of the microelectronic industry. Integrated circuits involving non volatile Flash memories are good examples of these trends. In this technology, the poly-silicon floating gate could be replaced by a discrete trap floating gate in which discrete traps are made up of silicon nanodots. The synthesis of nanodots by LPCVD (Low Pressure Chemical Vapor Deposition) from silane SiH4 on SiO2 surfaces remains one of the most promising ways of industrial synthesis. Despite a huge experimental effort, fundamental understanding of the key mechanisms of nanodots nucleation and growth remains elusive. Here we find the main objectives of the thesis. For nucleation, our main results reveal that only silylene SiH2 is involved in the very first steps of nucleation. The incubation time experimentally observed can be explained by the low SiH2 concentration and the first slow H2 desorption process. For growth, silane is the main responsible for deposition, which explains the autocatalytic behaviour of silicon deposition. The growth limiting step is clearly the H2 desorption process. Comparisons between experimental and multiscale modelling allow to explain why classical kinetics of the literature overestimate nanodots deposition rate. We have found that the silicon deposition rate is higher on nanometer silicon dots than on a continuous silicon film. Key parameters to conveniently model nanodots deposition are good descriptions of the first chemisorption sites and of the H2 desorption process.

Identiferoai:union.ndltd.org:theses.fr/2009INPT017G
Date23 January 2009
CreatorsZahi, Ilyes
ContributorsToulouse, INPT, Caussat, Brigitte
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds