Comprendre, contrôler et optimiser le mécanisme de la réaction de réduction de l’oxygène à la cathode, cette démarche devient une nécessité pour améliorer les dispositifs de conversion d'énergie de haute performance tels que les piles à combustible à oxyde électrolyte solide (PAC). Des films poreux à conduction mixte, ionique et électronique (MIEC) et leurs composites comprenant un conducteur ionique offrent des propriétés uniques. Cependant, la corrélation des propriétés intrinsèques des composants d'électrodes aux caractéristiques microstructurales reste une tâche difficile. Dans le cadre de cette thèse, la couche fonctionnelle de cathode de La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) pure et du composite LSCF/Ce0.9Gd0.1O2-δ (CGO) a été élaborée par la technique d’atomisation électrostatique. Une microstructure à porosité hiérarchique a été obtenue dans un domaine nanométrique à micrométrique. Les films ont été recouverts d’un collecteur de courant (CCL), LSCF, par sérigraphie. Une étude paramétrique a été réalisée expérimentalement pour optimiser la double couche en termes de taille de particules, de composition et d'épaisseur des couches de CFL et CCL. En se basant sur ces résultats, un modèle éléments finis 3D a été développé en utilisant les paramètres microstructuraux déterminés par tomographie de FIB-SEM dans une géométrie simple, similaire à des caractéristiques colonnaires. Dans ce travail, un guide de conception du matériau d’électrode a été proposé reliant des performances électrochimiques optimisées à la microstructure et aux propriétés du massif en combinant une étude expérimentale et une étude théorique de modélisation. Une cellule complète de PAC intégrant la cathode optimisée double couche de LSCF a été testée dans des conditions réelles d'exploitation. / Understanding, controlling and optimizing the mechanism of oxygen reduction reaction at the cathode need to be addressed for high performance energy conversion devices such as solid oxide fuel cells (SOFCs). Structured porous films of mixed ionic electronic conductors (MIECs) and their composites with addition of a pure ionic conductor offer unique properties. However, correlating the intrinsic properties of electrode components to microstructural features remains a challenging task. In this PhD thesis, cathode functional layers (CFL) of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and LSCF/Ce0.9Gd0.1O2-δ (CGO) composite cathodes with hierarchical porosity from nano- to micro-range are fabricated by electrostatic spray deposition technique. The films were topped with LSCF as a current collecting layer (CCL) by screen printing technique. A parametric optimization study was conducted experimentally in terms of particle size, composition, and thickness of CFL and CCL layers. The experimental results were supported by a numerical 3D Finite Element Model (FEM). Microstructural parameters determined by FIB-SEM tomography were used in a simple geometry similar to experimentally observed columnar features. In this work, experimental results and modelling were combined to provide design guidelines relating optimized electrochemical performances to the microstructure and bulk material properties. A complete fuel cell with optimized cathode film was tested in real SOFC operational conditions.
Identifer | oai:union.ndltd.org:theses.fr/2016GREAI071 |
Date | 09 December 2016 |
Creators | Celikbilek, Ozden |
Contributors | Grenoble Alpes, Djurado, Elisabeth, Martin, Christophe, Jauffrès, David, Burriel, Monica |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds