Return to search

Role of polythiophene- based interlayers from electrochemical processes on organic light-emitting diodes / Die Wirkung von elektrochemisch dotierten Polythiophenpufferschichten auf organische Leuchtdioden

In this work, well-defined and stable thin films based on polythiophene and its derivative, are employed as the hole-injection contact of organic light-emitting diodes (OLED). The polymer films are obtained by the electropolymerization or the electrochemical doping/dedoping of a spin-coated layer. Their electrical properties and energetics are tailored by electrochemical adjustment of their doping levels in order to improve the hole-injection from the anode as well as the performance of small molecular OLEDs. By using dimeric thiophene and optimizing the electrodeposition parameters, a thin polybithiophene (PbT) layer is fabricated with well-defined morphology and a high degree of smoothness by electro-polymerization. The introduction of the semiconducting PbT contact layer improves remarkably the hole injection between ITO anode and the hole- transport layer (NPB) due to its favourable energetic feature (HOMO level of 5.1 eV). The vapor-deposited NPB/Alq3 bilayer OLEDs with a thin PbT interlayer, show a remarkable reduction of the operating voltage as well as enhanced luminous efficiency compared to the devices without PbT. Investigations have also been made on the influence of PbT thickness on the efficiency and I-V feature as well as device stability of the OLED. It is demonstrated that the use of an electropolymerization step into the production of vapor deposited molecular OLED is a viable approach to obtain high performance OLEDs. The study on the PbT has been extended to poly(3,4-ethylenedioxythiophene) (PEDT) and the highly homogenous poly(styrenesulfonate) (PSS) doped PEDT layer from a spin-coating process has been applied. The doping level of PEDT:PSS was adjusted quantitatively by an electrochemical doping/dedoping process using a p-tuoluenesulfonic acid containing solution, and the redox mechanism was elucidated. The higher oxidation state can remain stable in the dry state. The work function of PEDT:PSS increases with the doping level after adjusting at an electrode potential higher than the value of the electrochemical equilibrium potential (Eeq) of an untreated film. This leads to a further reduction of the hole-injection barrier at the contact of the polymeric anode/hole transport layer and an ideal ohmic behavoir is almost achieved at the anode/NPB interface for a PEDT:PSS anode with very high doping level. Molecular Alq3-based OLEDs were fabricated using the electrochemically treated PEDT:PSS/ITO anode, and the device performance is shown to depend on the doping level of polymeric anode. The devices on the polymer anode with a higher Eeq than that for the unmodified anode, show a reduction of operating voltage as well as a remarkable enhancement of the luminance. Furthermore, it is found that the operating stability of such devices is also improved remarkably. This originates from the removal of mobile ions such as sodium ions inside the PEDT:PSS by electrochemical treatment as well as the planarization of the ITO surface by the polymer film. By utilizing an Al/LiF cathode with an enhanced electron injection and together with a high Eeq- anode, a balanced injection and recombination of hole and electron is achieved. It leads to a further reduction of the operating voltage and to a drastic improvement of EL efficiency of the device as high as 5.0 cd/A. The results demonstrate unambiguously that the electrochemical treatment of a cast polymer anode is an effective method to improve and optimize the performance of OLEDs. The method can be extended to other polythiophene systems and other conjugated polymers in the fabrication of the OLEDs as well as organic transistors and solar cells.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1075975979500-25235
Date05 January 2004
CreatorsZhang, Fapei
ContributorsTechnische Universität Dresden, Mathematik und Naturwissenschaften, Physik, Institut für Festkörperphysik, Prof. Dr. Jörg Fink, Prof. Dr. Wolfgang Brütting, Prof. Dr. Jörg Fink, Prof. Dr. Waldfried Plieth
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0026 seconds