El uso de elementos de tierras raras (RE) en materiales de luminiscencia ha permitido
introducir mejoras en diversas aplicaciones. En iluminación, por ejemplo, los fósforos
amarillos YAG (Y3Al5O12:Ce3+) son ampliamente utilizado en LED blancos. En los sistemas
de telecomunicaciones e Internet, se utilizan amplificadores de fibra dopada con erbio (Er3+)
para aplicaciones en la región de longitud de onda de las telecomunicaciones (1530-
1550 nm). En láseres, YAG:Nd3+ encuentran su aplicación en láseres de estado sólido con
una línea de emisión de 1,06 μm. Los YAG también pueden estar dopados con Tm3+ (1,93-
2,04 μm) o Er3+ (2,94 μm) y se utilizan principalmente en aplicaciones médicas. En las
células solares, las capas de convertidor espectral están diseñadas para aumentar la eficiencia
de las células solares. El espectro solar AM1.5G se puede modificar mediante procesos
llamados Up-conversion, quantum cutting, and down-shifting. Por tanto, se mejoraría el
EQE de las células solares.
El estudio central de este trabajo fue la preparación y optimización de la
luminiscencia de los iones Tb3+ e Yb3+ en la relativamente nueva matriz de a-SiOC: H para
aplicaciones luminiscentes como convertidores espectrales descendentes. El método
utilizado para la optimización de la luminiscencia se basa en tratamientos de recocido,
composición de la matriz y co-dopaje con elementos Tb e Yb. Los detalles experimentales
se presentan en el Capítulo 3. El primer objetivo de este trabajo se centró en la preparación
de capas de a-SiOC: H que pueden cultivarse en la superficie de una célula solar de prueba
(célula de Si + capa antirreflejante). La literatura reporta trabajos previos sobre SiOC. Sin
embargo, la mayoría de ellos se basan principalmente en la preparación a temperaturas
cercanas a los 1000 °C, lo que provocaría daños en la celda solar debido a la alta temperatura.
Por esta razón, se utilizó un sistema de pulverización catódica de RF con enfriamiento del
sustrato. Las propiedades ópticas de la matriz dependen de la composición de Si, C y O. por
lo que, el Capítulo 4 se enfoca en el estudio de (1) el análisis de composición y la estructura,
(2) el cálculo de la banda prohibida y la energía de Urbach, (3) el efecto del tratamiento de
recocido en la estructura de la red atómica y (4) los procesos que impulsan la luminiscencia
de matriz.
El segundo objetivo de este trabajo fue la optimización de la fotoluminiscencia de
los iones Tb3+ e Yb3+ en muestras de a-SiOC:H dopadas con uno de los dos iones. Una
luminiscencia creciente de los iones de RE3+ requiere (1) aumentar el número de iones RE3+
activos, (2) reducir las fuentes de pérdida de energía y (3) aumentar el número de
sensibilizadores. El Capítulo 5 examina estos procesos en detalle. En la literatura, la emisión de iones RE3+ está bien reportada. Sin embargo, los mecanismos de transferencia no radiativa
de energía de los estados de defecto (en materiales amorfos basados en silicio) a los dopantes
de RE son poco discutidos. Además, el ion RE3+ en tales materiales no reemplazará a
ninguno de los iones en la matriz como si lo hace en el caso de los materiales cristalinos
dopados con elementos de RE. En materiales amorfos (que contienen oxígeno), el ion RE3+
se ubicará en un sitio rodeado localmente por átomos de oxígeno. Por lo tanto, este trabajo
estudia y propone mecanismos de excitación para los iones Tb3+ e Yb3+. Estos mecanismos
pueden aplicarse en la matriz a-SiOC: H y extenderse a materiales basados en Si y SiOx.
Finalmente, estudios previos del efecto del carbono mostraron una mejora de la
luminiscencia de los iones RE3+. Por tanto, se llevó a cabo un estudio sistemático de
luminiscencia basado en el cambio de composición del carbono. Este trabajo estudia las
ventajas y desventajas del dopaje con carbono en la activación de la luminiscencia de los
iones RE3+. Los resultados también se presentan en el Capítulo 5.
El tercer objetivo de este trabajo fue la optimización de la luminiscencia del Yb en
muestras de a-SiOC:H co-dopadas. Entre los diferentes sistemas de iones RE3+ para
aplicaciones de corte cuántico (QC) en el infrarrojo cercano, los que incluyen iones Yb3+
parecen ser los más apropiados porque el ión Yb3+ tiene una transición a aproximadamente
980 nm (~ 1,22 eV) justo por encima de la banda prohibida del silicio cristalino de 1,1 eV.
Los iones Tb3+ se utilizaron para mejorar la emisión de los iones Yb3+. Por lo tanto, los
convertidores descendentes de infrarrojo cercano encuentran una posible aplicación en las
células solares de silicio. La capa de convertidor espectral se colocará en la parte superior
de la superficie de la célula solar, por lo que la capa de QC tiene la ventaja de que se puede
optimizar independientemente de la celda. En este trabajo se identifican y estudian los
mecanismos asociados a la transferencia de energía del huésped a los iones RE3+. Se estimó
el rendimiento cuántico de fotoluminiscencia de la capa convertidora espectral. Además, se
prepararon las capas en la superficie frontal de las células de mc-silicio, y se estudió su efecto
en la eficiencia cuántica externa. Por último, se estudió el mecanismo de transferencia
cooperativa entre los iones Tb3+ e Yb3+; los cuales son utilizados para explicar el proceso de
QC. Este mecanismo cooperativo se ha atribuido a los procesos de QC en muchas matrices
cristalinas y amorfas. Sin embargo, a pesar de numerosos documentos que adscriben sus
resultados al mecanismo de transferencia cooperativa, pocos realmente lo prueban. Por lo
tanto, también se analiza el papel de los iones Tb3+ en la luminiscencia del Yb. Los resultados
se presentan en el Capítulo 6. / The uses of rare-earth (RE) elements in luminescence materials led to important
improvements in a variety of applications. In lighting, for example, YAG yellow phosphors
(Y3Al5O12:Ce3+) are widely used for white LED devices. In telecommunication and internet
systems, erbium (Er3+)-doped fiber amplifiers are used in the telecom wavelength region
(1530-1550 nm). In laser, YAG:Nd3+ are used in solid-state lasers with an emission line at
1.06 μm. YAG can also be doped with Tm3+ (1.93-2.04 μm) or Er3+ (2.94 μm) and are mainly
used in medical applications. In solar cells, spectral converter layers are designed to increase
the efficiency of solar cells. The AM1.5G solar spectrum can be modified by processes called
up-conversion, quantum cutting, and down-shifting. Thus, it would improve the EQE of
solar cells.
The central study of this work was the preparation and optimization of the
luminescence of Tb3+ and Yb3+ ions in the relatively new a-SiOC:H matrix for luminescent
applications as spectral downconverters. The method used for luminescence optimization is
based on annealing treatments, matrix composition and co-doping with Tb and Yb elements.
Experimental details are presented in Chapter 3. The first goal of this work focused on the
preparation of a-SiOC:H layers that can be grown on the surface of a test solar cell (Si cell
+ antireflective layer). The literature reports previous works on SiOC. However, most of
them are mainly based on preparation at temperatures close to 1000 °C, which would lead
to damage in solar cell due to the high temperature. For this reason, an RF-sputtering system
with substrate cooling was used. The matrix optical properties depend on the Si, C, and O
composition. So, Chapter 4 focus on the study of (1) composition and structure analysis,
(2) the bandgap and Urbach energy calculation, (3) the effect of the annealing treatment on
the atomic network structure, and (4) the processes driving the matrix luminescence.
The second goal of this work was the optimization of the annealing temperature and
RE(Tb, Yb) concentration to improve the photoluminescence of the Tb3+ and Yb3+ ions in
single doped a-SiOC:H samples. An increasing RE luminescence requires (1) to increase the
number of active RE3+ ions, (2) to reduce the sources of energy loss, and (3) to increase the
number of sensitizers. Chapter 5 examines those processes in detail. In the literature, the
RE3+ ion emission is well reported. However, there is limited discussion of the mechanisms
of non-radiative energy transfer from defect states to RE dopants in silicon-based amorphous
ix
materials. Furthermore, the RE3+ ion in such materials will not replace any of the ions in the
matrix as it does in the case of RE doped crystalline materials. In amorphous materials
(containing oxygen), the RE3+ ion will be located at a site locally surrounded by oxygen
atoms. Hence, this work studies and proposes excitation mechanisms for Tb3+ and Yb3+ ions.
These mechanisms can be applied to the a-SiOC:H matrix and be extended to Si and SiOxbased
materials. Finally, previous studies of the effect of carbon showed an enhancement of
the luminescence of RE3+ ions. Therefore, a systematic study of luminescence was carried
out based on changing the carbon composition. This work seeks to study the advantages and
disadvantages of carbon doping in activating RE luminescence. The results are also
presented in Chapter 5.
The third goal of this work was the optimization of the annealing temperature and
RE(Tb, Yb) concentration to improve the Yb luminescence in co-doped a-SiOC:H samples.
Among different RE3+ ions systems for near-infrared quantum cutting (QC) applications,
those including Yb3+ ions seem to be the most appropriate because the Yb3+ ion has a
transition at about 980 nm (~1.22 eV) just above the crystalline silicon bandgap of 1.1 eV.
The Tb3+ ions (ion donor) are used to enhance the Yb emission. Thus, near-infrared
downconverter (DC) layers have found a possible application in silicon solar cells. The
spectral converter layer will be put on the top of the solar cell surface, incorporating the DC
layer leads to the advantage of a layer that can be optimized independently of the cell. This
work identifies and studies the mechanisms associated with the energy transfer from the host
to the RE3+ ions. Photoluminescence quantum yield of the spectral converter layer was
estimated. Also, the layers were prepared on the front surface of mc-silicon cells, and their
effect on the external quantum efficiency was studied. In addition, the cooperative transfer
mechanism between Tb3+ and Yb3+ ions were studied, which are used to explain the QC
process. This cooperative mechanism has been attributed to QC processes in many
crystalline and amorphous matrices. However, despite numerous documents that ascribe
their results to the cooperative transfer mechanism, few actually prove it. Therefore, the role
of the Tb3+ ions in the Yb luminescence is also discussed. The results are presented in
Chapter 6.
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:20.500.12404/21480 |
Date | 01 January 2025 |
Creators | Flores Escalante, Loreleyn Flor |
Contributors | Grieseler, Rolf |
Publisher | Pontificia Universidad Católica del Perú, PE |
Source Sets | Pontificia Universidad Católica del Perú |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/embargoedAccess, http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
Page generated in 0.0035 seconds