Return to search

Evolutionary ecology and discovery of new bioactive compounds from Lumnitzera mangroves across the Indonesian Archipelago

This thesis examines the biodiversity and evolutionary ecology of Lumnitzera mangroves in the Indonesian Archipelago. Using a combination of genomics and metabolomics, the study arrived at several key findings: (1) Investigation into 14 populations of L. littorea and 21 populations of L. racemosa revealed low genetic variation, with significant barriers like Sulawesi and the Java Sea influencing genetic differentiation. (2) Specifically for L. littorea, Wallace's line was identified as a key biogeographical separator, marking divergent evolutionary pathways and separating phylogroups, whereas L. racemosa showed a mixing population in the Wallacea region. (3) Uniquely, the research discovered a diversity in sulfated constituents, including previously unknown compounds like Lumnitzeralactone. (4) Further emphasizing the mangroves' medicinal importance, antibacterial potential was uncovered in the species. (5) The study innovatively linked phylogenetic data with chemical analyses, offering a comprehensive view of mangrove evolution and ecology. (6) Finally, the findings highlighted the need for specific conservation strategies, considering the genetic differentiation within populations, to protect the mangroves' ecological significance and medicinal value across Indonesia.:Preface 4
Summary 5
Zusammenfassung 10
1. Introduction 15
1.1. Characteristics, significance, and threat of mangroves 15
1.1.1. Characteristics of mangroves 15
1.1.2. Significance of Indonesian mangroves 16
1.1.3. Threats to mangroves 18
1.2. Evolutionary processes and diversity of mangroves 19
1.2.1. Evolution of mangroves 19
1.2.2. Sea surface currents in Indonesia shape genetic structure 20
1.2.3. The relevance of Wallace’s line to mangrove evolution 22
1.2.4. Isolation by geographical distance 24
1.2.5. Genetic diversity and population structure 25
1.3. Diversity of bioactive compounds of mangrove genus Lumnitzera 27
1.3.1. Sulfur-containing metabolites 27
1.3.2. Phylogenetics 28
1.3.3. Anti-infective potential 29
1.4. Study species 30
1.5. Aim of the thesis 33
2. Material and Methods 37
2.1. Sampling and sample design 37
2.2. Laboratory procedures and genetic analysis 38
2.2.1. DNA isolation 38
2.2.2. ddRADseq sequencing, and bioinformatics 38
2.2.3. Genetic diversity, population structure and differentiation 40
2.2.4. Identifying barriers and areas of connectivity 41
2.2.5. Isolation by distance and sea surface current connectivity 42
2.2.6. Polymerase Chain Reaction (PCR), and phylogenetic analyses 43
2.3. Laboratory procedures and phytochemical analysis 44
2.3.1. Root sample extraction 44
2.3.2. TLC, Low-resolution ESI-MS spectra, HPLC, and NMR 45
2.3.3. UHPLC-ESI-QqTOF-MS and MS/MS 46
2.3.4. RP-UHPLC-ESI-LIT-Orbitrap-MS 47
2.3.5. Extraction and isolation of compounds 47
2.3.6. Anti-infective bioassays 51
3. Results 52
3.1. Genetic diversity and population structure 52
3.1.1. Genetic diversity 52
3.1.2. Population structure and genetic differentiation 54
3.1.3. Effective migration 58
3.1.4. Isolation by distance and sea surface current connectivity 59

3.2. Unusual-sulfated constituent and anti-infective properties 61
3.2.1. Phytochemical screening 61
3.2.2. Phylogenetic tree of Lumnitzera 69
3.2.3. Evaluation of anti-infective properties 70
4. Discussion 74
4.1. Population genomics of Lumnitzera mangroves in Indonesia 74
4.1.1. The genetic diversity paradox in mangroves 74
4.1.2. Phylogroups and the Sunda-Wallacea biogeographical pattern 76
4.1.3. Limited mixture among phylogroups and populations by sea surface currents 78
4.1.4. Restricted gene flow by geographical distance 80
4.1.5. Evolutionary ecology of Lumnitzera inferred by genetics and chemodiversity 81
4.2. Bioactive compounds and anti-infective potential of Lumnitzera 82
4.2.1. Diversity of bioactive compounds 82
4.2.2. Sulfated and nonsulfated ellagic acid supported by phylogenetic pattern 83
4.2.3. Anti-infective properties and their restriction to particular locations 86
5. Conclusion and future perspective 89
6. References 94
7. Appendix 111
Curriculum vitae 119
Declaration of independent work 122
Acknowledgments 123
Author contributions statement 125
Authors’s Addendum / Diese Arbeit untersucht die biologische Vielfalt und evolutionäre Ökologie der Lumnitzera-Mangroven im indonesischen Archipel. Unter Verwendung einer Kombination aus Genomik und Metabolomik gelangte die Studie zu mehreren wichtigen Ergebnissen: (1) Die Untersuchung von 14 Populationen von L. littorea und 21 Populationen von L. racemosa ergab eine geringe genetische Variation, wobei signifikante Barrieren wie Sulawesi und die Javasee die genetische Differenzierung beeinflussen. (2) Speziell für L. littorea wurde die Wallace-Linie als wichtige biogeografische Trennlinie identifiziert, die divergierende Evolutionspfade markiert und Phylogruppen trennt, während L. racemosa eine Mischpopulation in der Wallacea-Region aufweist. (3) Einzigartig war die Entdeckung einer Vielfalt an sulfatierten Bestandteilen, darunter bisher unbekannte Verbindungen wie Lumnitzeralacton. (4) Ein weiterer Beleg für die medizinische Bedeutung der Mangroven ist das antibakterielle Potenzial, das in der Art entdeckt wurde. (5) Die Studie verknüpfte auf innovative Weise phylogenetische Daten mit chemischen Analysen und bot so einen umfassenden Einblick in die Evolution und Ökologie der Mangroven. (6) Schließlich verdeutlichten die Ergebnisse die Notwendigkeit spezifischer Erhaltungsstrategien, die die genetische Differenzierung innerhalb der Populationen berücksichtigen, um die ökologische Bedeutung und den medizinischen Wert der Mangroven in ganz Indonesien zu schützen.:Preface 4
Summary 5
Zusammenfassung 10
1. Introduction 15
1.1. Characteristics, significance, and threat of mangroves 15
1.1.1. Characteristics of mangroves 15
1.1.2. Significance of Indonesian mangroves 16
1.1.3. Threats to mangroves 18
1.2. Evolutionary processes and diversity of mangroves 19
1.2.1. Evolution of mangroves 19
1.2.2. Sea surface currents in Indonesia shape genetic structure 20
1.2.3. The relevance of Wallace’s line to mangrove evolution 22
1.2.4. Isolation by geographical distance 24
1.2.5. Genetic diversity and population structure 25
1.3. Diversity of bioactive compounds of mangrove genus Lumnitzera 27
1.3.1. Sulfur-containing metabolites 27
1.3.2. Phylogenetics 28
1.3.3. Anti-infective potential 29
1.4. Study species 30
1.5. Aim of the thesis 33
2. Material and Methods 37
2.1. Sampling and sample design 37
2.2. Laboratory procedures and genetic analysis 38
2.2.1. DNA isolation 38
2.2.2. ddRADseq sequencing, and bioinformatics 38
2.2.3. Genetic diversity, population structure and differentiation 40
2.2.4. Identifying barriers and areas of connectivity 41
2.2.5. Isolation by distance and sea surface current connectivity 42
2.2.6. Polymerase Chain Reaction (PCR), and phylogenetic analyses 43
2.3. Laboratory procedures and phytochemical analysis 44
2.3.1. Root sample extraction 44
2.3.2. TLC, Low-resolution ESI-MS spectra, HPLC, and NMR 45
2.3.3. UHPLC-ESI-QqTOF-MS and MS/MS 46
2.3.4. RP-UHPLC-ESI-LIT-Orbitrap-MS 47
2.3.5. Extraction and isolation of compounds 47
2.3.6. Anti-infective bioassays 51
3. Results 52
3.1. Genetic diversity and population structure 52
3.1.1. Genetic diversity 52
3.1.2. Population structure and genetic differentiation 54
3.1.3. Effective migration 58
3.1.4. Isolation by distance and sea surface current connectivity 59

3.2. Unusual-sulfated constituent and anti-infective properties 61
3.2.1. Phytochemical screening 61
3.2.2. Phylogenetic tree of Lumnitzera 69
3.2.3. Evaluation of anti-infective properties 70
4. Discussion 74
4.1. Population genomics of Lumnitzera mangroves in Indonesia 74
4.1.1. The genetic diversity paradox in mangroves 74
4.1.2. Phylogroups and the Sunda-Wallacea biogeographical pattern 76
4.1.3. Limited mixture among phylogroups and populations by sea surface currents 78
4.1.4. Restricted gene flow by geographical distance 80
4.1.5. Evolutionary ecology of Lumnitzera inferred by genetics and chemodiversity 81
4.2. Bioactive compounds and anti-infective potential of Lumnitzera 82
4.2.1. Diversity of bioactive compounds 82
4.2.2. Sulfated and nonsulfated ellagic acid supported by phylogenetic pattern 83
4.2.3. Anti-infective properties and their restriction to particular locations 86
5. Conclusion and future perspective 89
6. References 94
7. Appendix 111
Curriculum vitae 119
Declaration of independent work 122
Acknowledgments 123
Author contributions statement 125
Authors’s Addendum

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:87897
Date06 November 2023
CreatorsManurung, Jeprianto
ContributorsUniversität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/updatedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationhttps://doi.org/10.1111/jse.12923, urn:nbn:de:bsz:15-qucosa2-866898, https://doi.org/10.3390/separations8060082, qucosa:86689, qucosa:86689

Page generated in 0.0022 seconds