Return to search

Extração de parâmetros característicos para detecção acústica de vazamento de água. / Feature extraction for acoustic water leak detection.

Este trabalho apresenta a pesquisa sobre a extração de parâmetros característicos de sinais acústicos para fins de detecção automática de vazamento de água em tubulações enterradas. Os sinais acústicos foram adquiridos com o auxílio de um geofone eletrônico e também catalogados por técnicos especialistas em detecção acústica. De todos os sinais foram extraídos os modelos de predição linear perceptual de várias ordens, determinando-se como melhor a ordem 2. A partir de um conjunto de modelos de referência de sinais de vazamento, a distância média de Itakura dos outros modelos em relação a estas referências foram calculadas. Em conjunto com estas distâncias, quatro características espectrais são também extraídas do sinal a fim de compor o vetor de parâmetros característicos do sinal. Parte destes vetores de parâmetros característicos são utilizados para treinar o classificador de máquina de vetores de suporte. O restante dos dados são, então, submetidos a este classificador que obteve a taxa de acerto de classificação em torno de 93%. Experimentos anteriores, utilizando modelos de predição linear, de ordem 10, obtiveram uma taxa de acerto em torno de 82%. Isso demonstra que estes novos parâmetros característicos propostos alcançam os objetivos deste trabalho, que são algoritmos com melhor taxa de acerto na detecção de vazamentos. / This work presents a research about feature extraction of acoustic signals for detection of water leak in buried pipes. Acoustic signals were acquired by means of an electronic geophone and also labeled by technicians specialized in acoustic water leak detection. For every signals, its linear predictive model was estimated for a range of prediction orders, concluding for the best order 2. Out of this group of models, some leaky ones are used as reference for calculating the Itakura mean distance with respect to the other models. Completing this measure, four spectral features are extracted to compose the signal feature vector. Some of these vectors were used to train a support vector machine to be used as a classifier. The remaining ones were used to evaluate the classification. The resulting accuracy rate achieved is around 93%. Earlier experiments, which use linear prediction of order 10 had an accuracy rate around 82%. This shows that this novel proposal of feature vector achieves the main goal of this research, which is the increase in the leak detection accuracy rate.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19072011-110149
Date08 April 2011
CreatorsBorges, Liselene de Abreu
ContributorsArjona Ramírez, Miguel
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0026 seconds