Return to search

Modélisation de l’ablation radiofréquence pour la planification de la résection de tumeurs abdominales / Computational modeling of radiofrequency ablation for the planning and guidance of abdominal tumor treatment

L'ablation par radiofréquence (ARF) de tumeurs abdominales est rendue difficile par l’influence des vaisseaux sanguins et les variations de la conductivité thermique, compliquant la planification spécifique à un patient donné. En fournissant des outils prédictifs, les modèles biophysiques pourraient aider les cliniciens à planifier et guider efficacement la procédure. Nous introduisons un modèle mathématique détaillé des mécanismes impliqués dans l’ARF des tumeurs du foie comme la diffusion de la chaleur et la nécrose cellulaire. Il simule l’étendue de l’ablation à partir d’images médicales, d’après lesquelles des modèles personnalisés du foie, des vaisseaux visibles et des tumeurs sont segmentés. Dans cette thèse, une nouvelle approche pour résoudre ces équations basée sur la méthode de Lattice Boltzmann est introduite. Le modèle est d’abord évalué sur des données de patients qui ont subi une ARF de tumeurs du foie. Ensuite, un protocole expérimental combinant des images multi-modales, anatomiques et fonctionnelles pré- et post-opératoires, ainsi que le suivi de la température et de la puissance délivrée pendant l'intervention est présenté. Il permet une validation totale du modèle qui considère des données les plus complètes possibles. Enfin, nous estimons automatiquement des paramètres personnalisés pour mieux prédire l'étendu de l’ablation. Cette stratégie a été validée sur 7 ablations dans 3 cas cliniques. A partir de l'étude préclinique, la personnalisation est améliorée en comparant les simulations avec les mesures faites durant la procédure. Ces contributions ont abouti à des résultats prometteurs, et ouvrent de nouvelles perspectives pour planifier et guider l’ARF. / The outcome of radiofrequency ablation (RFA) of abdominal tumors is challenged by the presence of blood vessels and time-varying thermal conductivity, which make patient-specific planning extremely difficult. By providing predictive tools, biophysical models may help clinicians to plan and guide the procedure for an effective treatment. We introduce a detailed computational model of the biophysical mechanisms involved in RFA of hepatic tumors such as heat diffusion and cellular necrosis. It simulates the extent of ablated tissue based on medical images, from which patient-specific models of the liver, visible vessels and tumors are segmented. In this thesis, a new approach for solving these partial differential equations based on the Lattice Boltzmann Method is introduced. The model is first evaluated against clinical data of patients who underwent RFA of liver tumors. Then, a comprehensive pre-clinical experiment that combines multi-modal, pre- and post-operative anatomical and functional images, as well as the interventional monitoring of the temperature and delivered power is presented. This enables an end-to-end validation framework that considers the most comprehensive data set for model validation. Then, we automatically estimate patient-specific parameters to better predict the ablated tissue. This personalization strategy has been validated on 7 ablations from 3 clinical cases. From the pre-clinical study, we can go further in the personalization by comparing the simulated temperature and delivered power with the actual measurements during the procedure. These contributions have led to promising results, and open new perspectives in RFA guidance and planning.

Identiferoai:union.ndltd.org:theses.fr/2015NICE4071
Date14 October 2015
CreatorsAudigier, Chloé
ContributorsNice, Delingette, Hervé, Ayache, Nicholas
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds