Une dégradation des propriétés mécaniques des arcs surperélastiques en alliages à mémoire de forme à base NiTi, utilisés dans les traitements orthodontiques, a été observée après absorption d'hydrogène. L’effet de l’hydrogène a été étudié, dans un premier temps, sur le comportement global des arcs à l’aide des essais de traction et dans un deuxième temps, sur le comportement local à l’aide des essais de nanoindentation. Pour modéliser le comportement des AMFs après absorption d'hydrogène, une première approche a été proposée, en introduisant la dépendance des paramètres de la transformation martensitique à la concentration moyenne d'hydrogène, observée dans les courbes contrainte-déformation obtenues, dans un modèle existant dédié aux AMFs. Une deuxième approche consiste à proposer un modèle thermomécanochimique couplé. Pour ce faire, un nouveau potentiel thermodynamique est défini en introduisant la déformation chimique due à la présence de l'hydrogène et l'interaction de ce dernier avec les variantes de martensite. Des forces thermodynamiques sont déduites de ce potentiel et équilibrées en faisant intervenir les phénomènes dissipatifs : mécanique, thermique et chimique. L'exploitation du modèle proposé a nécessité le développement d'un élément fini spécifique adoptant la concentration d'hydrogène comme un degré de liberté supplémentaire qui prend en compte le couplage complet et la formulation proposée de l'équilibre thermique et chimique / A degradation of the mechanical properties of NiTi-based shape memory alloys superelastic archs, used in orthodontic treatments, was observed after hydrogen absorption. The effect of hydrogen was first investigated on the global behaviour of archs using tensile tests and secondly on the local behaviour using nanoindentation tests. A first approach to model the behavior of AMFs after hydrogen absorption has been proposed, by introducing the dependence of martensitic transformation parameters on the average hydrogen concentration, observed in the stress-strain curves obtained, in an existing dedicated model to SMA. A second approach is to propose a coupled thermomechanical model. A new thermodynamic potential is defined by introducing the chemical strain due to the presence of hydrogen and the interaction of the latter with martensite variants. Thermodynamic forces are deduced from this potential and balanced by involving mechanical, thermal and chemical dissipative phenomena. The exploitation of the proposed model required the development of a special finite element adopting the hydrogen concentration as an additional degree of freedom that takes into account the thermomechanical coupling and the proposed formulation of the thermal and chemical equilibrium
Identifer | oai:union.ndltd.org:theses.fr/2017LORR0384 |
Date | 05 May 2017 |
Creators | Lachiguer, Amani |
Contributors | Université de Lorraine, École nationale d'Ingénieurs de Monastir (Tunisie), Ben Zineb, Tarak, Bouraoui, Tarak |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds