Return to search

Impact d'un polluant environnemental, le benzo[a]pyrène, sur le microbiote intestinal en modèle murin / Impact of an environmental pollutant, benzo[a]pyrene, on gut microbiota in a mouse model

Le microbiote intestinal joue un rôle primordial dans l’homéostasie du tractus gastro-intestinal, et plus généralement dans celle de son hôte. A ce titre, de nombreuses pathologies humaines sont associées à une dysbiose de ce microbiote intestinal, tels que les cancers colorectaux, les maladies inflammatoires chroniques de l’intestin (MICI), les troubles du métabolisme ou encore les maladies auto-immunes. Ces pathologies ont une étiologie mal connue et multifactorielle dans laquelle l’environnement semble jouer un rôle clé. Des études récentes ont ainsi mis en évidence un lien entre la pollution atmosphérique et des pathologies humaines telles que les MICI. Parmi les différentes substances polluantes répertoriées, le benzo[a]pyrène (BaP), qui fait partie de la famille des hydrocarbures aromatiques polycycliques, est soumis à une surveillance accrue en raison de ses effets toxiques sur la santé humaine. De par ses propriétés pro-inflammatoires et mutagènes, le BaP pourrait modifier la composition du microbiote intestinal, induisant alors à une réponse inflammatoire et à une altération des fonctions intestinales. Dans le cadre de ce travail de thèse, une surexposition orale et chronique au BaP en modèle murin a conduit à une inflammation modérée principalement au niveau de la muqueuse iléale. L’analyse des amplicons du gène codant l’ARNr 16S a mis en évidence des modifications de la composition et de l’abondance relative des communautés bactériennes fécales et associées à la muqueuse intestinale avec notamment une augmentation et une diminution des taxa pro et anti-inflammatoires respectivement. Ainsi, dans des conditions de susceptibilité génétique et/ou en association avec d’autres facteurs environnementaux, l’exposition à ce polluant pourrait déclencher et/ou accélérer le développement de pathologies inflammatoires. L’identification des potentialités métaboliques des différentes populations bactériennes caractérisées précédemment et impactées par le polluant revêt donc un caractère primordial. La reconstruction de génomes directement à partir de l’écosystème microbien peut permettre d’établir ce lien entre structure et fonction. C’est également dans ce contexte, qu’une approche innovante de capture de gènes en solution a été développée. En effet, cette technique d’enrichissement permet de reconstruire de larges portions génomiques pouvant relier un biomarqueur phylogénétique à des gènes fonctionnels, y compris pour des populations bactériennes présentes en très faible abondance dans l’écosystème. / Gut microbiota plays a primordial role in gastro-intestinal tract and host homeostasis. Numerous pathologies are associated with a gut microbiota dysbioses, such as colorectal cancer, inflammatory bowel diseases (IBD), metabolism disorders or autoimmune diseases. The physiopathology of these diseases has multifactorial aetiology in which environmental factors seem to play a crucial role. Recent evidences have highlighted a link between air pollution and human diseases such as IBD. Among the different pollutant listed, benzo[a]pyrene (BaP), which belong to the family of polycyclic aromatic hydrocarbons, is subject to an increase surveillance due to its toxic effects on human health. By its pro-inflammatory and mutagenic proprieties, BaP could lead to modifications of gut microbiota composition, then inducing an inflammatory response and an alteration of intestinal functions. As part of this thesis, BaP subchronic oral exposure in murine model has led to a moderate inflammation mostly in ileal mucosa. The analysis of ARNr 16S amplicons has highlighted composition and abundance alterations of faecal and mucosa-associated microbiota, especially with increase and decrease of pro and anti- inflammatory taxa respectively. Thus, under conditions of genetic susceptibility and/or in association with other environmental factors, exposure to this pollutant could trigger and/or accelerate the development of inflammatory pathologies. Metabolic potential identification of different bacterial populations previously characterized and affected by the pollutant appears therefore primordial. Genome reconstruction directly from microbial ecosystem could allow to establish this link between structure and function. Also in this context, an innovative approach of gene capture in solution was developed. Indeed, this enrichment technique allows to reconstruct large genomic portions that could link phylogenetic biomarker and functional genes, including for bacterial populations present at very low abundance in the ecosystem.

Identiferoai:union.ndltd.org:theses.fr/2015CLF1MM18
Date10 November 2015
CreatorsRibière, Céline
ContributorsClermont-Ferrand 1, Peyretaillade, Eric
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds