Return to search

Entiers friables en progressions arithmétiques, et applications

Dans cette thèse, on s'intéresse à certaines propriétés additives des entiers n'ayant pas de grand facteurs premiers. Un entier est dit y-friable si tous ses facteurs premiers sont inférieurs à y. Leur étude est de plus en plus délicate à mesure que y est petit par rapport à la taille des entiers impliqués. On s'intéresse tout d'abord au comptage des solutions à l'équation a+b=c en entiers y-friables a, b et c On étudie ensuite la valeur moyenne de certaines fonctions arithmétiques sur les entiers friables translatés, de la forme n-1 où n est y-friable. La méthode du cercle permet de ramener la première question à l'étude de sommes de caractères de Dirichlet tordus par une exponentielle sur les entiers friables, qui sont ensuite évaluées en utilisant des outils classiques d'analyse harmonique, et en faisant intervenir la méthode du col. Les premier et deuxième chapitres étudient la situation respectivement avec et sans l'hypothèse de Riemann généralisée. Les troisième et quatrième chapitres sont consacrés à la seconde question, qui se ramène à l'étude de la répartition des entiers friables en moyenne dans les progressions arithmétiques. Cela met en jeu des sommes de caractères de Dirichlet sur les entiers friables, ainsi que le grand crible. Dans le dernier chapitre, la méthode de dispersion est employée pour étudier le cas particulier du nombre moyen de diviseurs des entiers friables translatés.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00926351
Date19 November 2013
CreatorsDrappeau, Sary
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds