Cette thèse est consacrée à l’enrichissement du modèle mathématique classique des structures intelligentes, en tenant compte des effets thermiques, et à son étude analytique et numérique. Il s'agit typiquement de structures se présentant sous forme de capteurs ou actionneurs, piézoélectriques et/ou magnétostrictifs, dont les propriétés dépendent de la température. On présente d'abord des résultats d'existence et unicité concernant deux problèmes posés sur un domaine tridimensionnel : le problème dynamique et le problème quasi-statique. A partir du problème quasi-statique on déduit un modèle bidimensionnel de plaque grâce à la méthode des développements asymptotiques en considérant quatre types différents de conditions aux limites, chacun visant à modéliser un comportement de type capteur et/ou actionneur. Chacun des quatre problèmes se découple en un problème membranaire et un problème de flexion. Ce dernier est un problème d'évolution qui tient compte d'un effet d'inertie de rotation. On focalise ensuite notre attention sur ce problème et on en présente une étude mathématique et numérique. L'analyse numérique est complétée avec des tests effectués sous l'environnement FreeFEM++. / This thesis is devoted to the enrichment of the usual mathematical model of smart structures, by taking into account thermal effects, and to its mathematical and numerical study. By the expression "smart structures" we refer to structures acting as sensors or actuators, whose properties depend on the temperature. We present at first the results of existence and uniqueness concerning two problems posed on a three-dimensional domain: the dynamic problem and the quasi-static problem. Based on the quasi-static problem, we infer a two-dimensional plate model by means of the asymptotic expansion method by considering four different sets of boundary conditions, each one featuring a sensor-like or an actuator-like behavior. Each of the four problems decouples into a membrane problem and a flexural problem. The latter is an evolution problem that accounts for a rotational inertia effect. Attention is then focused on this problem by presenting a mathematical and numerical study of it. Our numerical analysis is complemented with numerical tests carried out under the FreeFEM++ environment.
Identifer | oai:union.ndltd.org:theses.fr/2016MONTS027 |
Date | 06 July 2016 |
Creators | Bonaldi, Francesco |
Contributors | Montpellier, Krasucki, Françoise, Vidrascu, Marina |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds