Return to search

Génération de données synthétiques pour des variables continues : étude de différentes méthodes utilisant les copules

L’intérêt des agences statistiques à permettre l’accès aux microdonnées d’enquête est grandissant. À cette fin, plusieurs méthodes permettant de publier les microdonnées tout en protégeant la confidentialité des répondants ont été proposées ; ce mémoire se penche sur l’une d’entre-elles : la génération de données synthétiques. Deux approches sont présentées, GADP et C-GADP, et une nouvelle est proposée. La méthode GADP suppose que les variables des données originales et synthétiques sont de loi normale, alors que la méthode C-GADP suppose qu’elles sont jointes par une copule normale. La nouvelle méthode est basée sur les modèles de copules en vigne. Ces modèles sont employés dans l’espoir de mieux modéliser les liens entre les variables. Les trois approches sont évaluées selon les concepts d’utilité et de risque. L’utilité de données confidentielles s’apprécie selon la similitude qu’elles ont avec les données originales et le risque, par la possibilité d’une violation de la confidentialité des répondants. Le risque peut survenir par identification ou par inférence. Seul le risque d’inférence est possible dans le cadre de ce mémoire. Précisément, l’utilité est évaluée avec quelques mesures faites à partir d’analyses spécifiques et une mesure globale basée sur les scores de propension calculés avec une régression logistique. Quant au risque, il est évalué avec une prévision basée sur la distance. / Statistical agencies face a growing demand for releasing microdata to the public. To this end, many techniques have been proposed for publishing microdata while providing confidentiality : synthetic data generation in particular. This thesis focuses on such technique by presenting two existing methods, GAPD and C-GADP, as well as suggesting one based on vine copula models. GADP assumes that the variables of original and synthetic data are normally distributed, while C-GADP assumes that they have a normal copula distribution. Vine copula models are proposed due to their flexibility. These three methods are then assessed according to utility and risk. Data utility depends on maintaining certain similarities between the original and confidential data, while risk can be observed in two types : reidentification and inference. This work will focus on the utility examined with different analysis-specific measures, a global measure based on propensity scores and the risk of inference evaluated with a distance-based prediction.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27748
Date24 April 2018
CreatorsDesbois-Bédard, Laurence
ContributorsCharest, Anne-Sophie, Rivest, Louis-Paul
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (x, 102 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds