Return to search

Caracterização do escoamento bifásico em golfadas utilizando redes neurais artificiais / Characterization of two-phase slug flow using artificial neural networks

Escoamentos bifásicos líquido-gás estão presentes na natureza e em muitas atividades industriais. Neste tipo de escoamento, as fases líquida e gasosa podem assumir diferentes configurações espaciais dentro da tubulação, chamadas padrões de escoamento. O escoamento bifásico líquido-gás em golfadas é o padrão de escoamento mais frequente nas aplicações industriais, ocorrendo em uma ampla faixa de velocidades das fases segundo os estudos de diversos autores. A modelagem matemática para o escoamento em golfadas compreende desde modelos simples em regime estacionário até modelos mais complexos, em regime transiente. E, para solução destes modelos são necessárias correlações empíricas e distribuições estatísticas dos parâmetros característicos do escoamento. Assim, no presente trabalho, vários modelos baseados em redes neurais artificiais são apresentados como suporte à caracterização dos parâmetros do escoamento bifásico em golfadas em função das séries temporais de fração de vazio obtidas experimentalmente. As séries temporais de fração de vazio são medidas com um par de sensores de malha de eletrodos instalado na seção de testes de uma planta experimental do NUEMUTFPR e descritas em Castillo (2015). A partir das séries temporais de fração de vazio medidas são calculados os parâmetros de interesse para o escoamento em estudo: comprimento da bolha alongada de gás, comprimento do pistão de líquido, velocidade de translação da bolha alongada e desvios padrões para essas variáveis. Essas variáveis medidas e calculadas são utilizadas para a obtenção de um conjunto de modelos baseados em rede neural artificial. Após obtenção dos modelos é realizado um estudo de simulação no qual esses modelos são usados para estimar os parâmetros que caracterizam o escoamento bifásico em golfadas. Análises detalhadas dos resultados mostraram que as variáveis relacionadas à fase gasosa são estimadas com maior acurácia que as variáveis relacionadas à fase líquida. Como aplicação imediata do modelo obtido, apresenta-se sua utilização como uma ferramenta de cálculo das condições iniciais para um modelo matemático fenomenológico de escoamento bifásico em golfadas com leve mudança de inclinação baseado no método de seguimento de pistões. O diferencial do presente trabalho está na predição da característica intermitente do escoamento bifásico líquido-gás em golfadas a partir do modelo neural, além da estimação de parâmetros médios para as variáveis de interesse com taxas de incerteza variando entre 10% e 16%. / Gas-liquid two-phase flows are present in nature and in different industrial activities. In this type of flow, the liquid and gas phases assume different spatial configurations inside the pipe, called flow patterns. Slug flow is one of the most frequent flow patterns in industrial applications, occurring over a wide range of phase velocities according to studies presented by several authors. The mathematical modelling of slug flow comprises from simple steady state models to more complex models for transient regimes. Those models require closure relationships, e.g. empirical correlations and statistical distributions of characteristic flow parameters. In this work, several models based on artificial neural networks are presented as a support to the characterization of the two-phase slug flow parameters that depend on experimentally obtained void fraction time series. The void fraction time series are measured with a pair of wiremesh sensors installed in a test section of an experimental rig in the premises of the NUEM/UTFPR labs and described in Castillo (2015). From the time series of void fraction measurements relevant parameters to the flow under consideration are computed: the length of the elongated gas bubble, the liquid slug length, the translational velocity of the elongated bubble and the standard deviations for those variables. Those measured and calculated variables are used to obtain a set of artificial neural network-based models. After obtaining such models, a simulation study in which those models are used to estimate the parameters that characterize the two-phase slug flows is carried out. Detailed analysis of the results showed that the variables related to the gas phase are estimated with greater accuracy than the ones related to the liquid phase. As an immediate application of the obtained model, its use as a tool to calculate the initial conditions for a phenomenological mathematical model of twophase slug flow with a slight change of inclination based on a slug tracking method is presented. The differential of this study is to predict the intermittent features of the twophase slug flow by means of a neural model, as well as the estimation of average parameters for the variables of interest with uncertainly rates ranging between 10% and 16%.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.utfpr.edu.br:1/2654
Date14 December 2016
CreatorsCozin, Cristiane
ContributorsArruda, Lucia Valeria Ramos de, Morales, Rigoberto Eleazar Melgarejo, Arruda, Lucia Valeria Ramos de, Ribeiro, Eduardo Parente, Paterno, Aleksander Sade, Silva, Marco Jose da
PublisherUniversidade Tecnológica Federal do Paraná, Curitiba, Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, UTFPR, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UTFPR, instname:Universidade Tecnológica Federal do Paraná, instacron:UTFPR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds