Return to search

Characterising (pre-)mrnp organisation at different stages of gene regulation using single-molecule microscopy

Les ARNm sont des molécules centrales pour la régulation des gènes, aidant à convertir l'information génétique stockée dans l'ADN en protéines fonctionnelles. En tant que polymère simple brin, mesurant des centaines à des milliers de nucléotides, les ARNm peuvent former des structures secondaires et tertiaires étendues formant des particules appelés ribonucléoprotéines messagères (RNPm) en s’assemblant avec des protéines. L'organisation 3D des (pré-)RNPm influence de nombreux aspects de leur métabolisme, incluant la régulation de leur maturation, de leur export et de leur traduction dans le cytoplasme. Malgré leur importance, notre compréhension de l'organisation structurelle des (pré-)RNPm in vivo, et des principes qui la régissent est minime.
Au cours de ma thèse, j'ai analysé l'organisation des (pré-)mRNP en développant une vision centrée sur l'ARN. Pour cela, j'ai mis en place une approche combinant l'hybridation in situ d'ARN monomoléculaire (smFISH) avec la microscopie à illumination structurée (SIM) et l'ai utilisée pour étudier l'organisation des mRNP dans le noyau et le cytoplasme. Nos résultats suggèrent que l'organisation (pré-)mRNP varie à différents stades de sa vie. Nous montrons que l'empaquetage (pré-)mRNP commence de manière co-transcriptionnelle, avec des introns organisés en conformations compactes. Cette organisation est modifiée au cours de la transcription au fur et à mesure que la polymérase se déplace le long du gène, assemblant finalement un intron avec les extrémités à proximité l’une de l’autre, d'une manière dépendante du spliceosome, suggérant que l'organisation co-transcriptionnelle des introns pourrait être critique pour déterminer son excision. Une fois libérés, les mRNP ont une organisation linéaire compacte dans le nucléoplasme et éventuellement une conformation en tige. L'organisation d’un mRNP dans le cytoplasme est influencée par sa traduction. Alors que la traduction ouvre les mRNP, la séparation des extrémités de l'ARNm, l'inhibition de la traduction et la libération de ribosomes, ou le recrutement dans les granules de stress, donnent aux mRNP une structure très compacte. Fait intéressant, nous trouvons rarement des ARNm avec les extrémités 5' et 3' à proximité, ce qui suggère que la traduction en boucle fermée n'est pas un état universel pour tous les ARNm en cours de traduction. Ensemble, nos résultats fournissent une image essentielle de l'organisation du mRNP dans les cellules et souligne le rôle important de la conformation du RNPm dans la régulation de la traduction et de la maturation d’une RNPm. / mRNAs act as the central molecules in gene regulation, helping convert the genetic information stored in the DNA to functional proteins. As a single-stranded polymer, hundreds to thousands of nucleotides in length, mRNAs can form extensive secondary and tertiary structures and, together with proteins, are packaged into assemblies called messenger ribonucleoproteins (mRNPs). The 3D organisation of (pre-)mRNPs influences many aspects of what happens to them, including regulating their processing, export and translation in the cytoplasm. Despite their significance, our understanding of the structural organisation of (pre-)mRNPs in vivo is minimal, as is our comprehension of the principles that govern it.
During my PhD, I have developed an RNA-centric view on (pre-)mRNP organisation. For this, I have established an approach combining single-molecule RNA in situ hybridisation (smFISH) with structured illumination microscopy (SIM) and used it to study mRNP organisation in the nucleus and cytoplasm. Our results suggest that (pre-)mRNP organisation is altered at various stages during its lifetime. We show that (pre-)mRNP packaging starts co-transcriptionally, with introns organised into compact conformations. This organisation is altered during the course of transcription as the polymerase travels along the gene, finally assembling an intron with the ends in proximity in a spliceosome dependent manner, suggesting that co-transcriptional intron organisation could be critical in determining its excision. Once released, mRNPs have a compact linear organisation in the nucleoplasm and possibly a rod-like conformation. mRNP organisation in the cytoplasm is influenced by its translational status. While translation opens up mRNPs, separating the ends of the mRNA, translation inhibition and release of ribosomes, or recruitment to stress granules result in mRNPs having a highly compact structure. Interestingly, we rarely find mRNAs with the 5’ and 3’ ends in proximity, suggesting that closed-looped translation is not a universal state for all translating mRNAs. Together, our results provide a unique and essential view of mRNP organisation in cells and reveal important insight into the role of mRNP conformation in regulating translation and mRNP processing.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/26309
Date07 1900
CreatorsAdivarahan, Srivathsan
ContributorsZenklusen, Daniel
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0031 seconds