Return to search

Interaction of type I interferons and mTOR signaling underlying PRRSV infection

Master of Science in Biomedical Sciences / Department of Anatomy and Physiology / Yongming Sang / Animal metabolic and immune systems integrate and inter-regulate to exert effective immune responses to distinct pathogens. The signaling pathway mediated by mechanistic target of rapamycin (mTOR) is critical in cellular metabolism and implicated in host antiviral responses. Recent studies highlight the significance of the mTOR signaling pathway in the interferon (IFN) response. Type I IFNs mediate host defense, particularly, against viral infections, and have myriad roles in antiviral innate and adaptive immunity. In addition to their well-known antiviral properties, type I IFNs also affect host metabolism. However, little is known about how animal type I IFN signaling coordinates immunometabolic reactions during antiviral defense. Therefore, understanding the interaction of mTOR signaling and the type I IFN system becomes increasingly important in potentiating antiviral immunity.

Tissue macrophages (MФs) are a primary IFN producer during viral infection, and their polarization to different activation statuses is critical for regulation of immune and metabolic homeostasis. Using porcine reproductive and respiratory syndrome virus (PRRSV) as a model, we found that genes in the mTOR signaling pathway were regulated differently in PRRSV-infected porcine alveolar MФs at different activation statuses. Therefore we hypothesize that: 1) the mTOR signaling pathway involves host anti-PRRSV regulation; 2) mTOR signaling interacts with IFN signaling to modulate the antiviral response; and 3) different type I IFN subtypes (such as IFN-α1 and IFN-β) regulate mTOR signaling differently. We show that modulation of mTOR signaling regulated PRRSV infection in MARC-145 cells and porcine primary cells, in part, through regulating production and signaling of type I IFNs. In addition, expression and phosphorylation of two key components in the mTOR signaling pathway, AKT and p70 S6 kinase, were regulated by type I IFNs and PRRSV infection.

Taken together, we determined that the mTOR signaling pathway, a key pathway in regulation of cell metabolism, also mediates the type I IFN response, a key immune response in PRRSV infection. Our findings reveal that the mTOR signaling pathway potentially has a bi-directional loop with the type I IFN system and implies that some components in the mTOR signaling pathway can serve as targets for augmentation of antiviral immunity and therapeutic designs.

Identiferoai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/32860
Date January 1900
CreatorsLiu, Qinfang
PublisherKansas State University
Source SetsK-State Research Exchange
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds