Return to search

SRPK2 Phosphorylation by the AGC Kinases, and mTORC1 Regulation of Alternative Splicing

The mechanisms through which a cell controls its proliferation, differentiation, metabolism, motility, and ultimate survival in response to extracellular cues are largely controlled by the Ras-extracellular signal-regulated kinase (Ras-ERK) and phosphatidylinositol 3-kinase mammalian target of rapamycin (PI3K-mTOR) signaling pathways. Originally delineated as two separate and linear signaling pathways, multitudes of evidence through experimentation have shown that these pathways can co-regulate downstream targets and cellular outcomes. Here, we provide evidence for an additional point of pathway convergence the serine/arginine protein kinase 2 (SRPK2). Originally identified as a target of the mTORC1/S6K signaling pathway, we have shown SRPK2 to be a target of the Ras-ERK-Rsk pathway, as well as the PI3K-AKT. We discovered the S6K, AKT and RSK all phosphorylate SRPK2 at serine 494 in a cell-type, stimulus dependent manner, emphasizing the redundant nature of the AGC kinases. SRPK2 regulates the phosphorylation of the constitutive and alternative splicing factors the SR proteins. This led us to question mTORC1 involvement in splice site selection, and we discovered several alternative splicing events downstream of mTORC1 signaling. We found that the protein levels of the splicing factors ASF/SF2 and hnRNPa2b1 are regulated by mTORC1 signaling, and we hypothesize this is through regulated unproductive splicing and translation (RUST). Interestingly, we found that BIN1, a target of both ASF/SF2 and hnRNPa2b1, is alternatively spliced, following modulations in mTORC1 signaling. These biochemical studies and knowledge gleaned from them will lead to a better understanding of how the cell can regulate protein expression by controlling alternative splicing.

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/9817664
Date06 October 2014
CreatorsDempsey, Jamie Michelle
ContributorsBlenis, John
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0023 seconds