Return to search

Computing spectral data for Maass cusp forms using resonance

The primary arithmetic information attached to a Maass cusp form is its Laplace eigenvalue. However, in the case of cuspidal Maass forms, the range that these eigenvalues can take is not well-understood. In particular it is unknown if, given a real number r, one can prove that there exists a primitive Maass cusp form with Laplace eigenvalue 1/4 + r2. Conversely, given the Fourier coefficients of a primitive Maass cusp form f on Γ0(D), it is not clear whether or not one can determine its Laplace eigenvalue. In this paper we show that given only a finite number of Fourier coefficients one can first determine the level D, and then compute the Laplace eigenvalue to arbitrarily high precision. The key to our results will be understanding the resonance and rapid decay properties of Maass cusp forms. Let f be a primitive Maass cusp form with Fourier coefficients λf (n). The resonance sum for f is given by SX(f;α;β) = Εn≥1λf(n)‑Φ(n/X) e(αnβ) where φ ∈ Cc∞((1, 2)) is a Schwartz function and α ∈ R and β, X > 0 are real numbers. Sums of this form have been studied for many different classes of functions f, including holomorphic modular forms for SL(2, Z), and Maass cusp forms for SL(n,Z). In this paper we take f to be a primitive Maass cusp form for a congruence subgroup Γ0(D) ⊂ SL(2, Z). Thus our result extends the family of automorphic forms for which their resonance properties are understood. Similar analysis and algorithms can be easily implemented for holomorphic cusp forms for Γ0(D). Our techniques include Voronoi summation, weighted exponential sums, and asymptotics expansions of Bessel functions. We then use these estimates in a new application of resonance sums. In particular we show that given only limited information about a Maass cusp form f (in particular a finite list of high Fourier coefficients), one can determine its level and estimate its spectral parameter, and thus its Laplace eigenvalue. This is done using a large parallel computing cluster running MATLAB and Mathematica

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-6512
Date01 May 2016
CreatorsSavala, Paul
ContributorsYe, Yangbo
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2016 Paul Savala

Page generated in 0.0021 seconds