Return to search

Influence of Reinforcing Steel Parameters on the Formation of the Passive Layer

Corrosion in reinforced concrete bridge decks has always been a concern amongst engineers. However, as structures continue to increase in size and in the amount of reinforcement present, consideration must be given to parameters such as the clear spacing arrangements between bars, the presence and absence of stay-in-place (SIP) forms, and differences in the cathode bar to anode bar ratios. Limited research has been performed to determine the effects of the parameters (Shiessel, P. 1986).

Research has been conducted on the effects of macrocell corrosion compared to microcell corrosion. Previous studies have shown that the measured microcell corrosion is not augmented greatly by the macrocell current (Andrade et al. 1991). In this study, twenty-seven specimens were cast with reinforcing steel to represent reinforcing mats at the top and bottom of each specimen. Top and bottom spacing arrangements were approximately 51, 76, 102 mm (2, 3, and 4-inches), cathode-to-anode bar (C/A) ratios were 2 and 1, and the presence and absence of SIP were considered. Macrocell currents, resistivity measurements, half-cell potential measurements, and corrosion current densities were recorded over a 273 day time period to compare the differences that existed amongst the three different parameters.

Based upon the data that was collected, no significant differences were recorded when comparisons were made between the spacing arrangements, the absence and presence of SIP, and differences in C/A ratios. The formation of the passive layer was confirmed by the corrosion current densities and half-cell potentials. The rate of the formation of the passive layer occurred in two distinct periods, a rapid rate from casting to about 105 days and a significantly slower rate beyond 105 days after casting. There was no detected influence of the macrocell activity on the formation of the passive layer throughout the 273 day study period. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31323
Date13 April 2007
CreatorsSmolinski, Laura J.
ContributorsCivil Engineering, Weyers, Richard E., Mokarem, David W., Roberts-Wollmann, Carin L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationSmolinski3.pdf

Page generated in 0.0018 seconds