Return to search

Cellular and Molecular Mechanisms of Fungal β-(1→6)-Glucan in Macrophages

Over the last 40-yr, the majority of research on glucans has focused on β-(1→3)-glucans. Recent studies indicate that β-(1→6)-glucans may be even more potent immune modulators than β-(1→3)-glucans. Mechanisms by which β-(1→6)-glucans are recognized and modulate immunity are unknown. In this study, we examined the interaction of purified water-soluble β-(1→6)-glucans with macrophage cell lines and primary peritoneal macrophages and the cellular and molecular consequences of this interaction. Our results indicate the existence of a specific β-(1→6)-glucan receptor that internalizes the glucan ligand via a clathrin-dependent mechanism. We show that the known β-(1→3)-glucans receptors are not responsible for β-(1→6)-glucan recognition and interaction. The receptor-ligand uptake/interaction has an apparent dissociation constant (KD) of ∼4-μM, and was associated with phosphorylation of ERK and JNK but not Iκ-α or p38. Our results indicate that macrophage interaction with β-(1→6)-glucans may lead to modulation of genes associated with anti-fungal immunity and recruitment/activation of neutrophils. In summary, we show that macrophages specifically bind and internalize β-(1→6)-glucans followed by activation of intracellular signaling and modulation of anti-fungal immune response-related gene regulation. Thus, we conclude that the interaction between innate immunity and β-(1→6)-glucans may play an important role in shaping the anti-fungal immune response.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-16747
Date01 January 2015
CreatorsNoss, Ilka, Ozment, Tammy R., Graves, Bridget M., Kruppa, Michael D., Rice, Peter J., Williams, David L.
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceETSU Faculty Works
Rightshttp://creativecommons.org/licenses/by/4.0/

Page generated in 0.0142 seconds