Return to search

Geochemistry of mafic dikes from the Coastal New England magmatic province in southeast Maine, USA and Nova Scotia, Canada

Mid-Late Triassic-age alkali-basalt dikes were emplaced along the coast of New England between 240-200 Ma. Known as the Coastal New England (CNE) magmatic province, this dike swarm is the immediate magmatic predecessor to the formation of the Central Atlantic Magmatic Province large igneous province at 201 Ma and the breakup of Pangea. The intent of this study is to determine the melt source and mechanisms for melting which produced the Triassic coastal dikes. To achieve this goal, major and trace element compositions were analyzed for 53 CNE dikes from Maine and Nova Scotia. Radiogenic Nd-Sr-Pb-Hf ratios, representing some of the first 176Hf/177Hf data for CNE, are reported for 12 of the dikes.

Taken together, the compositional data implicate melting of a deep mantle source that is relatively enriched in incompatible elements, such as a mantle-plume similar to those hypothesized as the source of melting in modern ocean-island basalts (i.e. Hawaii). Dike compositions are inconsistent with melts generated at typical spreading-center ridges (i.e. MORB). Modeling suggests that CNE melts ascended through thick continental crust, consistent with the incipient stages of rifting of Pangea, as evidenced by a heterogeneous mix of melting and crystallization depths, between 0-70km, with no clear geographic pattern. Radiogenic isotope data are relatively consistent and represent a mixture between HIMU, EMI and DMM mantle reservoirs, implying component consisting of relict subducted oceanic crust (or other similarly evolved material). CNE magmatism may have contributed to the breakup of Pangea by destabilizing the lower crust in the limited local area where it erupted, but its true relationship with the breakup of Pangea and later CAMP event requires more study. / Master of Science / Approximately 200-250 million years ago, hundreds of sheets of lava, called dikes, erupted along what is today the coast of New England. As these volcanic dikes rose up from the Earth’s mantle, they traveled along cracks and weak areas of the Earth’s crust. Today, these dikes are found along the New England coast as far south as Rhode Island and as far north as Nova Scotia, Canada. Based on the similarity of their geochemistry and petrology, as well as their geologic age and geography of their eruption, geologists group these dikes and similar volcanics together as a single, related magmatic event. This magmatic event produced the Coastal New England (CNE) magmatic province. 250 million years ago, the coast of New England was actually an interior part of the supercontinent known as Pangea. Around 250 m.yr. ago, Pangea slowly began rifting apart, which is when CNE volcanism began. By 200 m.yr. ago, Pangea had broken up, and CNE volcanism had ended. Further complicating the story, a large-igneous province (LIP) also erupted 200 m.yr. ago. Known as the Central Atlantic Magmatic Province (CAMP), this volcanism consisted of enormous volumes of lava that flooded over the entire east coast of the United States. The intent of this study is to determine what geological conditions led to the CNE volcanism. By learning which part of the Earth melted and why, CNE volcanism’s role in the breakup of Pangea, and the much larger CAMP eruptions that coincided with it, will become clearer. For instance, did the geologic events that resulted in CNE volcanism contribute to the breakup of Pangea, or did the breakup of Pangea cause CNE volcanism followed by CAMP volcanism? To achieve this goal, the geochemical compositions of 53 CNE dikes from Maine and Nova Scotia were analyzed. Radiogenic Nd-Sr-Pb-Hf ratios for a subset of the dikes (12) were also analyzed. This study presents some of the first radiogenic hafnium data for rocks from CNE. The data indicate that the melting which produced the CNE dikes began in the deep mantle, similar to the melting of mantle plumes beneath modern ocean-islands such as Hawaii. In contrast, shallow mantle melting, like the melting at mid-ocean ridges where oceanic crust is produced, is not consistent with the geochemical evidence presented for CNE in this study. Modeling suggests that CNE magmas rose through thick continental crust, which caused them to begin forming crystals at relatively high depths. Radiogenic isotope data suggests that part of the mantle that melted was old, recycled oceanic crust or similar mantle material. CNE magmatism may have contributed to the breakup of Pangea by destabilizing the lower crust in the limited local area where it erupted, but its true relationship with the breakup of Pangea and later CAMP event requires more study.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/90395
Date21 June 2019
CreatorsWhalen, William Taylor
ContributorsGeosciences, Caddick, Mark J., Gazel, Esteban, Spotila, James A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds