Return to search

Understanding Crustal Volatiles : Provenance,  Processes and Implications

Knowledge of the provenance of crustal volatiles and the processes by which they are released is extremely important for the dynamics of magmatic systems. Presented here are the results of multiple investigations, which aim to understand magmatic volatile contamination from contrasting but complementary perspectives. The main methodologies used include He and C isotope values and CO2/3He ratios of volcanic gases and fluids; simulation of magma-carbonate interaction using high-pressure high-temperature experimental petrology; X-ray microtomography of vesiculated xenoliths and computer modeling. Findings show that the contribution from upper crustal volatiles can be substantial, and is dependant on the upper crustal lithology on which a volcano lies, as well as the composition of the magma supplied. Carbonate dissolution in particular is strongly controlled by the viscosity of the host magma. The details of the breakdown of vesiculated xenoliths is complex but has wide reaching implications, ranging from the dissemination of crustally derived materials through a magma body to highlighting that crustal volatiles are largely unaccounted for in both individual volcano and global volatile budgets. In synthesizing the conclusions from each of the individual perspectives presented, I propose the contribution of volatiles from crustal sources to play a significant role in many geological systems. This volatile component should be taken into consideration in future research efforts.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-171486
Date January 2012
CreatorsBlythe, Lara S.
PublisherUppsala universitet, Berggrundsgeologi, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 912

Page generated in 0.0015 seconds