L'objectif du projet de doctorat est le développement d'une procédure innovante de mesure et post-traitement des données pour obtenir des informations quantitatives sur les paramètres magnétiques de nanoparticules magnétiques individuelles par l'utilisation de la Microscopie à Force Magnétique (MFM). Les nanoparticules magnétiques (MNP), grâce à leurs propriétés magnétiques particulières (monodomaine, superparamagnétisme, etc.) et leur taille nanométrique, conviennent à plusieurs applications biomédicales, telles que les systèmes d'administration de médicaments, les traitements de hyperthermie magnétique, l'étiquetage cellulaire, les agents de contraste pour l'imagerie a résonance magnétique (IRM). La conception de ces techniques requiert une connaissance détaillée des propriétés magnétiques des nanomatériaux utilisès, comme l'aimantation de saturation Ms, le champ magnétique de saturation Hs, la coercivité Hc. Les techniques standard, comme les dispositifs supraconducteurs à interférence quantique (SQUID) ou la magnétomètrie à échantillon vibrant (VSM), permettent la détection des propriétés magnétiques globales des populations de nanoparticules. Mais la détection des propriétés magnétiques des particules isolées n'est pas possible et l'évaluation de ces propriétés en fonction de la taille des particules n'est pas explicite. Grâce à sa résolution latérale nanométrique et sa capacité à détecter des champs magnétiques faibles, MFM est un outil puissant pour la caractérisation de dimensions de nanoparticules isolées, ainsi que leurs propriétés magnétiques. Cependant, une méthodologie pour obtenir des informations quantitatives sur les caractéristiques magnétiques de nanoparticules isolées par MFM n'a pas été individualisée, principalement en raison de i) la complexité des interactions pointe-échantillon qui affectent les mesures MFM et qui produisent également des phénomènes non magnétiques (par exemple, des interactions électrostatiques), et ii) l’absence d'un modèle théorique décrivant les interactions magnétiques entre la pointe et une nanoparticule de manière cohérente avec les données expérimentales détectées. Pour exploiter toutes le potentialités de la technique MFM en tant qu'instrument de nanométrologie magnétique, la stratégie proposée et suivie dans ce projet est organisée en 4 phases:1) a vérification théorique et expérimentale et la rationalisation des problemes ouvertes limitant l'applicabilité de la MFM à la caractérisation magnétique quantitative des NP individuels; Dans cette phase, la présence d'artefacts électrostatiques a été individualisée comme principale limite responsable de l'incohérence entre les données expérimentales et les modèles théoriques décrivant les interactions tip-NP. 2) le développement d'un appareil instrumental et d'une procédure de mesure pour évaluer et éliminer les contributions non magnétiques (électrostatiques) affectant quantitativement les données MFM; 3) l'individuation d'un modèle théorique décrivant l'interaction magnétique pointe-NP, cohérente avec les données expérimentales, et capable d'établir une relation précise entre les données mesurées et les paramètres physiques à déterminer (magnétisation dans le cas spécifique); 4) le développement d'une procédure pour mesurer quantitativement les propriétés magnétiques, et eventuellement d'autres paramètres, de nanoparticules isolées par MFM. Les résultats obtenus avec les procédures et les méthodologies présentées dans cette thèse ont démontré la possibilité de réaliser des mesures magnétiques quantitatives sur des NP magnétiques individuelles par la plateforme technologique MFM. / The objective of the PhD project is the development of a innovative measurement procedure and a data post-processing method to obtain quantitative information about the magnetic parameters of single magnetic nanoparticles through the use of the Magnetic Force Microscopy (MFM) technique. Magnetic nanoparticles (MNPs), thanks to their particular magnetic properties (single domains, superparamagnetism, etc.) and their nanometric size, are thought to be suitable for several biomedical applications, such as drug delivery systems, magnetic hyperthermia treatments, cell labelling, contrast agents for Magnetic Resonance Imaging (MRI). The design of these techniques requires a detailed knowledge on the magnetic properties of the adopted nanomaterials, like the saturation magnetization Ms, the saturation magnetic field Hs, the coercivity Hc. Standard techniques, like Superconducting Quantum Interference Devices (SQUID) or Vibrating Sample Magnetometer (VSM), to allow the detection of global magnetic properties of nanoparticles populations. Nevertheless, the detection of magnetic properties of single particles is not possible and the evaluation of the particle size dependence is not explicit. Thanks to its nanometric lateral resolution and its capability to detect weak magnetic fields, MFM is a potential powerful tool for the characterization of single nanoparticles dimensions, together with their magnetic properties. However, a methodology to extract quantitative information about the magnetic characteristics of single nanoparticles through MFM has not been individuated, mainly because of the complexity of tip-sample interactions affecting MFM measurements, which produces also non magnetic phenomena (e.g. electrostatic interactions), and the lack of a theoretical model describing the magnetic tip-NP interactions consistently with the detected experimental data. In order to exploit all the potential capabilities of MFM as a magnetic nanometrology tool, the strategy proposed and followed in this project is organized in the following four phases: 1) the theoretical and experimental verification and rationalization of the open issues and the problems limiting the applicability of MFM to the quantitative magnetic characterization of single NPs; in this phase the presence of electrostatic artifacts has been individuated as the main limitation responsible for the inconsistency between experimental data and theoretical models describing the tip-NP interactions. 2) the development of an instrumental apparatus and a measurement procedure to evaluate and eliminate the non-magnetic (electrostatic) contributions quantitatively affecting the MFM data; 3) the individuation of a theoretical model describing the magnetic tip-NP magnetic interaction, coherent with the experimental data, and able to establish a precise relationship between the measured data and the physical parameters desired to be determined (magnetization in the specific case); 4) the development of a procedure to quantitatively measure the magnetic properties, and eventually other parameters, of single nanoparticles by MFM. The results obtained with the procedures and methodologies presented in this thesis demonstrated the possibility of performing quantitative magnetic measurements on single magnetic NPs by MFM technology platform. / L'obiettivo del progetto di dottorato è lo sviluppo di una procedura di misura innovativa e di un metodo di elaborazione dei dati al fine di ottenere informazioni quantitative sui parametri magnetici di singole nanoparticelle magnetiche attraverso l'uso della Microscopia a Forza Magnetica MFM. Le nanoparticelle magnetiche (MNPS), grazie alle loro particolari proprietà magnetiche (singolo dominio, superparamagnetismo, etc.) e le loro dimensioni nanometriche, stanno recentemente trovando grande applicazione in diverse tecniche in campo biomedico, come i sistemi di somministrazione mirata di farmaci, trattamenti di tumori tramite ipertermia magnetica, l'etichettatura cellulare, gli agenti di contrasto per la risonanza magnetica nucleare (MRI). Il design e l’ottimizzazione di queste tecniche richiede una conoscenza dettagliata delle proprietà magnetiche dei nanomateriali adottati, come la magnetizzazione di saturazione Ms, il campo magnetico di saturazione Hs, la coercitività Hc. Le tecniche standard, come i Superconducting Quantum Interference Devices (SQUID) o i magnetometro a vibrazione del campione (VSM), consentono il rilevamento delle proprietà magnetiche globali di numerose popolazioni di nanoparticelle. Ma il rilevamento delle proprietà magnetiche di singole particelle non è possibile e la valutazione di queste proprietà in dipendenza della dimensione delle particelle non è esplicito. Grazie alla risoluzione laterale nanometrica e la sua capacità di rilevare i campi magnetici deboli, la tecnica MFM rappresenta uno strumento ad elevato potenziale per la caratterizzazione delle proprietà magnetiche di singole nanoparticelle, insieme alle loro dimensioni. Tuttavia, un metodo per estrarre informazioni quantitative sulle caratteristiche magnetiche di singole nanoparticelle attraverso la tecnica MFM non è stato individuato, soprattutto a causa della complessità delle interazioni punta-campione che interessano le misurazioni e che possono dare luogo anche a contributi non magnetici (ad esempio interazioni elettrostatiche), e alla mancanza di un modello teorico in grado di descrivere le interazioni magnetiche punta-NP in modo coerente con i dati sperimentali rilevati. Al fine di individuare e superare i limiti della tecnica MFM che ne limitano l’utilizzo come strumento nanometrologico magnetico, la strategia proposta e seguita in questo progetto di dottorato è organizzata nelle seguenti 4 fasi: 1) la verifica teorica e sperimentale e la razionalizzazione delle problematiche che limitano l'applicabilità della tecnica MFM alla caratterizzazione magnetica quantitativa di singole NP; in questa fase la presenza di artefatti elettrostatici è stato individuata come il principale limite responsabile per la riscontrata l'inconsistenza tra i dati sperimentali e modelli teorici che descrivono le interazioni tip-NP. 2) lo sviluppo di un apparato strumentale e una procedura miosura per la valutazione ed eliminazione dei contributi elettrostaticie non magnetici che influiscono quantitativamente sui dati MFM; 3) l'individuazione di un modello teorico che descrive l'interazione magnetica punta-NP coerentemente con i dati sperimentali, e in grado di stabilire una relazione precisa tra i dati misurati e i parametri fisici che si desiderano misurare (magnetizzazione nel caso specifico); 4) lo sviluppo di un procedimento per misurare quantitativamente le proprietà magnetiche, ed eventualmente altri parametri, di singole nanoparticelle tramite MFM. I risultati ottenuti con le procedure e le metodologie presentate in questa tesi hanno dimostrato la possibilità di effettuare misure magnetiche quantitative su singole NP magnetiche facendo uso della piattaforma tecnologica MFM.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/28163 |
Date | 24 April 2018 |
Creators | Angeloni, Livia |
Contributors | Mantovani, D., Rossi, Marco |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxix, 196 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0035 seconds