[pt] Sensores capazes de detectar campos magnéticos são largamente aplicados nas mais variadas áreas da engenharia. Um magnetômetro é um dispositivo que, baseado na utilização de um sensor magnético, é capaz de medir a magnitude e/ou direção de um campo magnético. Magnetômetros GMI são transdutores magnéticos cujos elementos sensores se baseiam no efeito da Magnetoimpedância Gigante (Giant Magnetoimpedance - GMI) que se caracteriza pela grande variação da impedância (módulo e fase) de uma amostra de material ferromagnético quando submetida a um campo magnético externo. A sensibilidade dos transdutores magnéticos está diretamente associada à sensibilidade de seus elementos sensores. No caso de amostras GMI, a sensibilidade é afetada por diversos parâmetros, e essa dependência ainda não é bem modelada quantitativamente. Esta dissertação apresenta um modelo computacional baseado em Redes Neurais MLP e em Algoritmos Genéticos que determina a sensibilidade ótima da fase da impedância do efeito GMI em função do campo magnético externo, para ligas ferromagnéticas amorfas de composição Co70 Fe5 Si15 B10, a partir dos seguintes parâmetros que as afetam: comprimento das amostras, nível CC e frequência da corrente de excitação além do campo magnético externo. / [en] Sensors capable of detecting magnetic fields are widely applied in many areas of engineering. A magnetometer is a device that based on the use of a magnetic sensor is capable of measuring the magnitude and direction of a magnetic field. Magnetometers GMI are magnetic transducers which sensors elements are based on the Giant Magnetoimpedance effect (Giant Magnetoimpedance - GMI) that is characterized by large variation of the impedance (magnitude and phase) of a sample of ferromagnetic material when subjected to an external magnetic field. The magnetic transducers sensitivity is directly affected by the sensitivity of its sensor elements. In the case of GMI samples, the sensitivity is affected by several parameters, and this dependence is not well modeled quantitatively. This dissertation presents a computational model based on feedforward Multilayer Perceptron Neural Networks and Genetic Algorithms that determines the optimal impedance phase sensitivity of the GMI effect, as functions of the magnetic field, for Co70 Fe5 Si15 B10 ferromagnetic amorphous alloys, The proposed model is based on some of the main parameters that affect it: length of the samples, DC level and frequency of the excitation current and the external magnetic field.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:37862 |
Date | 30 April 2019 |
Creators | ANTONIO CESAR DE OLIVEIRA PITTA BOTELHO |
Contributors | MARLEY MARIA BERNARDES REBUZZI VELLASCO, MARLEY MARIA BERNARDES REBUZZI VELLASCO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | English |
Type | TEXTO |
Page generated in 0.0027 seconds