Return to search

Analýza vybraných artefaktů v difuzních magneticko-rezonančních měřeních / Analysis of Selected Artefacts in Diffusion-Based Magnetic Resonance Measurements

The presented dissertation thesis analyses artefacts in diffusion-weighted images. In medical practice, the artefacts can impede the diagnostics of pathological tissues and, therefore, need to be eliminated. As the first step within the thesis, an analysis of the most frequent artefacts in diffusion-weighted images is performed, and the hitherto known approaches to artefact elimination are described. In order to facilitate the reduction of artefacts caused by the inhomogeneity of the static magnetic field and induced by eddy currents, a novel three-measurement method is shown. This technique will find application especially in measuring the diffusion coefficient of isotropic materials. At this point, it is important to note that a significant and commonly found problem is the magnetic susceptibility artefact; different magnetic susceptibility values at the boundary between two materials can cause magnetic field inhomogeneities and even complete loss of the signal. Therefore, we designed a novel method for the measurement of magnetic susceptibility in various samples of magnetically incompatible materials, which do not produce any MR signal. The technique was experimentally verified using a set of differently shaped diamagnetic and paramagnetic samples. In addition to the magnetic susceptibility problem, the thesis presents artefacts such as noise, motion-induced items, hardware limitations, chemical shift, and the dependence of the diffusion coefficient on the temperature. To enable precise measurement of the diffusion coefficient, we proposed a thermal system; in the experiment, it was determined that when the measurement error does not exceed 5%, the temperature change should not be higher than 0,1 °C. In the final sections of the thesis, practical application examples involving the designed methods are shown.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:233601
Date January 2013
CreatorsMarcoň, Petr
ContributorsKrál, Bohumil, Frollo, Ivan, Bartušek, Karel
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0023 seconds