Manipulation of ferromagnetic (FM) spins (and spin textures) using an antiferromagnet (AFM) as an active element in exchange coupled AFM/FM heterostructures is a promising branch of spintronics. Recent ground-breaking experimental demonstrations, such as electrical manipulation of the interfacial exchange coupling and FM spins, as well as ultrafast control of the interfacial exchange-coupling torque in AFM/FM heterostructures, have paved the way towards ultrafast spintronic devices for data storage and neuromorphic computing device applications.[5,6] To achieve electrical manipulation of FM spins, AFMs offer an efficient alternative to passive heavy metal electrodes (e.g., Pt, Pd, W, and Ta) for converting charge current to pure spin current. However, AFM thin films are often integrated into complex heterostructured thin film architectures resulting in chemical, structural, and magnetic disorder.
The structural and magnetic disorder in AFM/FM-based spintronic devices can lead to highly undesirable properties, namely thermal dependence of the AFM anisotropy energy barrier, fluctuations in the magnetoresistance, non-linear operation, interfacial spin memory loss, extrinsic contributions to the effective magnetic damping in the adjacent FM, decrease in the effective spin Hall angle, atypical
magnetotransport phenomena and distorted interfacial spin structure. Therefore, controlling the magnetic order down to the nanoscale in exchange coupled AFM/FM-based heterostructures is of fundamental importance. However, the impact of fractional variation in the magnetic order at the nanoscale on the magnetization reversal, magnetization dynamics, interfacial spin transport, and the interfacial domain structure of AFM/FM-based heterostructures remains a critical barrier.
To address the aforementioned challenges, we conduct a comprehensive experimental investigation of chemical, structural, magnetization reversal (integral and element-specific), magnetization dynamics, and magnetotransport properties, combined with high-resolution magnetic imaging of the exchange coupled Ni3Fe/IrMn3-based heterostructures.
Initially, we study the chemical, structural, electrical, and magnetic properties of epitaxially textured MgO(001)/IrMn3(0-35 nm)/Ni3Fe(15 nm)/Al2O3(2.0 nm) heterostructures. We reveal the impact of magnetic field annealing on the interdiffusion at the IrMn3/Ni3Fe interface, electrical resistivity, and magnetic properties of the heterostructures. We further present an AFM IrMn3 film thickness
dependence of the exchange bias field, coercive field, magnetization reversal, and magnetization dynamics of the exchange coupled heterostructures. These experiments reveal a strong correlation between the chemical, structural and magnetic properties of the IrMn3-based heterostructures. We find a significant decrease in the spin-mixing conductance of the chemically-disordered IrMn3/Ni3Fe
interface compared to the chemically-ordered counterpart. Independent of the AFM film thickness, we unveil that thermally disordered AFM grains exist in all the samples (measured up to 35-nm-thick IrMn3 films). We develop an iterative magnetic field cooling procedure to systematically manipulate the orientation of the thermally disordered and reversible AFM moments and thus, achieve tunable magnetic, and magnetotransport properties of exchange coupled AFM-based heterostructures. Subsequently, we investigate the impact of fractional variation in the AFM order on the magnetization reversal and magnetotransport properties of the epitaxially textured ɣ-phase IrMn3/Ni3Fe, Ni3Fe/IrMn3/Ni3Fe, and Ni3Fe/IrMn3/Ni3Fe/CoO heterostructures.
We probe the element-specific (FM: Ni and Co, and AFM: Mn) magnetization reversal properties of the exchange coupled Ni3Fe/IrMn3/Ni3Fe/Co/CoO heterostructures in various magnetic field cooled states. We present a detailed procedure for separating the spin and orbital moment contributions for magnetic elements using the XMCD sum rule. We address whether Mauri-type domain walls can develop at the (polycrystalline) exchange coupled Ni3Fe/IrMn3/Ni3Fe interfaces. We further study the impact of magnetic field cooling on the AFM Mn (near L2,3-edges) X-ray absorption spectra. Finally, we employ a combination of in-field high-resolution magnetic force microscopy, magnetooptical Kerr effect magnetometry with micro-focused beam, and micromagnetic simulations to study the magnetic vortex structures in exchange coupled FM/AFM and AFM/FM/AFM disk structures. We examine the magnetic vortex annihilation mechanism mediated by the emergence and subsequent annihilation of the vortex-antivortex (V-AV) pairs in simple FM and exchange coupled FM/AFM as well as AFM/FM/AFM disk structures. We image the distorted magnetic vortex structures in exchange coupled FM/AFM disks proposed by Gilbert and coworkers. We further emphasize crucial magnetic vortex properties, such as handedness, effective vortex core radius, core displacement at remanence, nucleation field, annihilation field, and exchange bias field.
Our experimental inquiry offers profound insight into the interfacial exchange interaction, magnetization reversal, magnetization dynamics, and interfacial spin transport of the AFM/FM-based heterostructures. Moreover, our results pave the way towards nanoscale control of the magnetic properties in AFM-based heterostructures and point towards future opportunities in the field of AFM
spintronic devices.:1. Introduction
2. Magnetic Interactions and Exchange Bias Effect
3. Materials
4. Experimental Methods
5. Structural, Electrical, and Magnetization Reversal Properties of Epitaxially Textured ɣ-IrMn3/ Ni3Fe Heterostructures
6. Magnetization Dynamics of MgO(001)/IrMn3/Ni3Fe Heterostructures in the Frequency Domain
7. Tunable Magnetic and Magnetotransport Properties of MgO(001)/Ni3Fe/IrMn3/Ni3Fe/ CoO/Pt Heterostructures
8. Element-Specific XMCD Study of the Exchange Couple Ni3Fe/IrMn3/Ni3Fe/Co/CoO Heterostructures
9. Distorted Vortex Structure and Magnetic Vortex Reversal Processes in Exchange Coupled Ni3Fe/IrMn3 Disk Structures
10. Conclusions and Outlook
Addendum
Acronyms
Symbols
Publication List
Author Information
Acknowledgments
Statement of Authorship
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:86077 |
Date | 21 June 2023 |
Creators | Arekapudi, Sri Sai Phani Kanth |
Contributors | Hellwig, Olav, Albrecht, Manfred, Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds