Return to search

Polarization properties of high numerical aperture holographic optical elements

The polarization dependent diffraction efficiency and imaging properties of high numerical aperture (N.A.) holographic optical elements (HOEs) were investigated to determine the suitability of these elements for magneto-optic data storage head applications. Two-wave first-order coupled wave theory was combined with a local planar grating model to determine the s and p-polarization diffraction efficiency characteristics of these HOEs. Experimental results for 0.55 N.A. focusing HOEs fabricated in silver halide photographic emulsions and dichromated gelatin films demonstrated that the p-to-s-polarization diffraction efficiency ratio at the Bragg angle corresponded with theoretical results to within 5%. Diffraction based wave propagation theory and a geometrical ray trace model were used to evaluate the imaging performance of these elements. Results from the diffraction based wave propagation model showed that the HOEs imaging performance had very minimal polarization dependence. The ray trace model indicated precise alignment and good wavelength stability are needed to achieve diffraction limited performance.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/277172
Date January 1989
CreatorsO'Connor, Arthur Bruce, 1963-
ContributorsKostuk, Raymond K.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0022 seconds