Return to search

Analysis of geographical and temporal patterns of malaria transmission in Limpopo Province, South Africa using Bayesian geo-statistical modelling.

South Africa is at the southern fringe of sub-Saharan African countries which persist in







experiencing malaria transmission. The purpose of the study is to analyse the geographical







and temporal patterns of malaria transmission from 2000 to 2011 using Bayesian geostatistical







modelling in Limpopo Province, South Africa. Hereafter, develop malaria case







data-driven spatio-temporal models to assess malaria transmission in Limpopo Province.







Malaria case data was acquired from the South African Medical Research Council (MRC).







Population data was acquired from AfriPopo; and Normalised Difference Vegetation Index







(NDVI), Land Surface Temperature (LST) and Land Cover data were acquired from







MODerate-resolution Imaging Spectro-radiometer (MODIS). Rainfall, Altitude and distance







to water bodies’ data were acquired from African Data Dissemination Service (ADDS),







United States Geological Survey (USGS) and Environmental Systems Research Institute







(ESRI), respectively. Bayesian spatio-temporal incidence models were formulated for Gibbs







variable selection and models were fitted using the best set of environmental factors. Modelbased







predictions were obtained over a regular grid of 1 x 1km. spatial resolution covering







the entire province and expressed as rates of per 1 000 inhabitants for the year 2010. To







assess the performance of the predicted malaria incidence risk maps, the predictions and field







observations were compared.







The best set of environmental factors selected by variable selection was Altitude and the night







temperature of two months before the case was reported. The environmental factors were then







used for model fitting and all of the covariates were important on malaria risk. Predictions







were done using all the environmental factors. The predictions showed that Vhembe and







Mopani district municipalities have high malaria transmission as compared to other district







municipalities in Limpopo Province. Assessment of predictive performance showed scatter







plots with the coefficient of determination ( R² ). The values representing the statistical







correlation represented by the coefficient of determination ( R² ) were 0.9798 (January),







0.8736 (February), 0.8152 (March), 0.8861 (April), 0.9949 (May), 0.3838 (June), 0.7794







(July), 0.9235 (September), 0.8966 (October), 0.9834 (November) and 0.8958 (December).







August had two values reported and predicted which resulted in R² of 1. The numbers of the















The produced malaria incidence maps can possibly be considered as one of the baselines for future malaria control programmes. The results highlighted the risk factors of malaria in Limpopo Province which are the most important characteristics of malaria transmission. / M.Sc. University of KwaZulu-Natal, Durban, 2013.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/11316
Date17 October 2014
CreatorsMgabisa, Aphelele Ronnie.
ContributorsGebreslasie, Michael T.
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds