Dispersing co-crystals in a polymeric carrier may improve their physicochemical properties such as dissolution rate and solubility. Additionally co-crystal stability may be enhanced. However, such dispersions have been little investigated to date. This study focuses on the feasibility of dispersing co-crystals in a polymeric carrier and theoretical calculations to predict their stability. Acetone/chloroform, ethanol/water, and acetonitrile were used to load and grow co-crystals in a HPMCAS film. Caffeine-malonic acid and ibuprofennicotinamide co-crystals were prepared using solvent evaporation method. The interactions between each of the co-crystals components and their mixtures with the polymer were studied. A solvent evaporation approach was used to incorporate each compound, a mixture, and co-crystals into HPMCAS films. Differential scanning calorimetry data revealed a higher affinity of the polymer to acidic compounds than their basic counterparts as noticed by the depression of the glass transition temperature (Tg). Moreover, the same drug loading produced films with different Tgs when different solvents were used. Solubility parameter values (SP) of the solvents were employed to predict that effect on the depression of polymer Tg with relative success. SP values were more successful in predicting the preferential affinity of two acidic compounds to interact with the polymer. This was confirmed using binary mixtures of naproxen, flurbiprofen, malonic acid, and ibuprofen. On the other hand, dispersing basic compounds such as caffeine or nicotinamide with malonic acid in HPMCAS film revealed the growth of co-crystals. A dissolution study showed that the average release of caffeine from films containing caffeine-malonic acid was not significantly different to that of films containing similar caffeine concentration. The stability of the caffeine-malonic acid co-crystals in HPMC-AS was prolonged to 8 weeks at 95% relative humidity and 45°C. The theory developed in this project, that an acidic drug with a SP value closer to the polymer will dominate the interaction process and prevent the majority of the other material from interacting with the polymer, may have utility in designing co-crystal systems in polymeric vehicles
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:569698 |
Date | January 2012 |
Creators | Isreb, Abdullah |
Contributors | Forbes, Robert T.; Bonner, Michael C. |
Publisher | University of Bradford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10454/5525 |
Page generated in 0.0023 seconds