Anandamide, N-arachidonylethanolamide (NAE 20:4), is an endocannabinoid receptor ligand unique to animals, in which it influences a wide range of physiological and behavioral functions. Using selective lipidomics approach, we recently identified occurrence of anandamide or NAE 20:4 and its precursor in moss plants. While Nacylethanolamines (NAEs) with C12-C18 acyl chain are ubiquitous in seed plants and play a role in mediating abscisic acid (ABA)-dependent or -independent responses to stress, endocannabinoid receptor-mediated interactions, similar to that of animals, have not been elucidated for plants. Physcomitrella patens provides us with a unique opportunity to address if 1) early land plants, such as mosses, retained NAE-mediated signaling mechanism that is akin to animals but not to vascular plants and 2) if such distinctive NAE profile and mechanisms by which it may function in moss plants is responsible, in part, for their natural ability to resist high temperatures and tolerate osmotic and salt stresses and dehydration. Our current studies are focused on characterization of anandamide metabolic pathway and its functional role in the development of moss. Insights into unique lipid composition and signaling pathways that mosses acquired naturally, during their successful transition from water to land, may lead to development of tools necessary to enhance abiotic stress tolerance in other plants.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-6007 |
Date | 21 July 2013 |
Creators | Sante, Richard, Shiva, Sunitha, Welti, Ruth, Kilaru, Aruna |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.002 seconds