Return to search

Hierarchical segmentation of mammograms based on pixel intensity

Mammography is currently used to screen women in targeted risk classes for breast cancer. Computer assisted diagnosis of mammograms attempts to lower the workload on radiologists by either automating some of their tasks or acting as a second reader. The task of mammogram segmentation based on pixel intensity is addressed in this thesis. The mammographic process leads to images where intensity in the image is related to the composition of tissue in the breast; it is therefore possible to segment a mammogram into several regions using a combination of global thresholds, local thresholds and higher-level information based on the intensity histogram. A hierarchical view is taken of the segmentation process, with a series of steps that feed into each other. Methods are presented for segmentation of: 1. image background regions; 2. skin-air interface; 3. pectoral muscle; and 4. segmentation of the database by classification of mammograms into tissue types and determining a similarity measure between mammograms. All methods are automatic. After a detailed analysis of minimum cross-entropy thresholding, multi-level thresholding is used to segment the main breast tissue from the background. Scanning artefacts and high intensity noise are separated from the breast tissue using binary image operations, rectangular labels are identified from the binary image by their shape, the Radon transform is used to locate the edges of tape artefacts, and a filter is used to locate vertical running roller scratching. Orientation of the image is determined using the shape of the breast and properties of the breast tissue near the breast edge. Unlike most existing orientation algorithms, which only distinguish between left facing or right facing breasts, the algorithm developed determines orientation for images flipped upside down or rotated onto their side and works successfully on all images of the testing database. Orientation is an integral part of the segmentation process, as skin-air interface and pectoral muscle extraction rely on it. A novel way to view the skin-line on the mammogram is as two sets of functions, one set with the x-axis along the rows, and the other with the x-axis along the columns. Using this view, a local thresholding algorithm, and a more sophisticated optimisation based algorithm are presented. Using fitted polynomials along the skin-air interface, the error between polynomial and breast boundary extracted by a threshold is minimised by optimising the threshold and the degree of the polynomial. The final fitted line exhibits the inherent smoothness of the polynomial and provides a more accurate estimate of the skin-line when compared to another established technique. The edge of the pectoral muscle is a boundary between two relatively homogenous regions. A new algorithm is developed to obtain a threshold to separate adjacent regions distinguishable by intensity. Taking several local windows containing different proportions of the two regions, the threshold is found by examining the behaviour of either the median intensity or a modified cross-entropy intensity as the proportion changes. Image orientation is used to anchor the window corner in the pectoral muscle corner of the image and straight-line fitting is used to generate a more accurate result from the final threshold. An algorithm is also presented to evaluate the accuracy of different pectoral edge estimates. Identification of the image background and the pectoral muscle allows the breast tissue to be isolated in the mammogram. The density and pattern of the breast tissue is correlated with 1. Breast cancer risk, and 2. Difficulty of reading for the radiologist. Computerised density assessment methods have in the past been feature-based, a number of features extracted from the tissue or its histogram and used as input into a classifier. Here, histogram distance measures have been used to classify mammograms into density types, and ii also to order the image database according to image similarity. The advantage of histogram distance measures is that they are less reliant on the accuracy of segmentation and the quality of extracted features, as the whole histogram is used to determine distance, rather than quantifying it into a set of features. Existing histogram distance measures have been applied, and a new histogram distance presented, showing higher accuracy than other such measures, and also better performance than an established feature-based technique.

Identiferoai:union.ndltd.org:ADTP/220980
Date January 2004
CreatorsMasek, Martin
PublisherUniversity of Western Australia. School of Electrical, Electronic and Computer Engineering, University of Western Australia. Centre for Intelligent Information Processing Systems
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Martin Masek, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.1147 seconds