Return to search

Genetic Variation at the Insulin-like Growth Factor 1 Gene and Association with Breast Cancer, Breast Density and Anthropometric Measures

Background and objectives

Evidence suggests that circulating IGF-I levels increase mammographic density (a breast cancer risk factor) and breast cancer risk in premenopausal women. The objective of this thesis was to examine the association of genetic variation at the IGF1 gene with IGF-I concentration, mammographic density, breast cancer risk, and related anthropometric measures in premenopausal women.

Methods

Three IGF1 CA repeat polymorphisms (at the 5′ and 3′ ends, and in intron 2) were genotyped. A cross-sectional design was used to investigate their associations with IGF-I levels, mammographic density, BMI, weight, and height. Families from registries in Ontario and Australia were used to investigate associations with breast cancer risk and also BMI, weight and height.
Results
In the cross-sectional study, greater number of copies of the 5′ 19 allele were associated with lower circulating IGF-I levels. Greater number of 3′ 185 alleles were associated with greater percentage breast density, smaller amount of non-dense tissue, and lower BMI. Including BMI in regression models removed the association of the 3′ 185 allele with percentage breast density.
In the family based study, nominally significant associations (5′ 21 allele, intron 2 212 allele, intron 2 216 allele) with breast cancer risk were observed, but significance was lost after multiple comparison adjustment. There was a stronger association between the intron 2 216 allele and risk under a recessive model, and 5′ allele groupings of length 18 to 20 and 20 or more repeats produced significant positive and negative associations respectively. These associations were not strongly supported in analyses stratified by registry. Results from the family based study did not support an association between genetic variation at IGF1 with BMI, weight or height.

Conclusions

No specific IGF1 variant influenced each of circulating IGF-I levels, mammographic density, and breast cancer risk. The failure to replicate the association of the 3′ 185 allele with BMI in the family based study suggests that the association of the 3′ 185 allele with percentage breast density is spurious, since this association was mediated through the relationship with BMI (suggesting IGF-I action on body fat). Evidence for an association between IGF1 and breast cancer risk was limited.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/11108
Date28 July 2008
CreatorsFehringer, Gordon Markus
ContributorsBoyd, Norman F.
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis
Format1936539 bytes, application/pdf

Page generated in 0.0019 seconds