Cystic fibrosis (CF) is a single gene Mendelian disorder characterized by pulmonary disease and pancreatic insufficiency. Pulmonary disease is the major cause of death in CF patients. Although some cystic fibrosis transmembrane conductance regulator (CFTR) genotypes are associated with less severe disease, patients possessing the same genotype show great variation in pulmonary disease severity and progression. Genes involved in modulating the inflammatory response and genes increasing susceptibility to infection are proposed as modifiers of pulmonary disease severity. Polymorphisms selected for based on evidence that they affect the function of the gene and prevalence of the putative risk allele: 1) antiprotease gene alpha-1-antitrypsin (alpha-1-AT), 2) innate immunity genes: mannose binding lectin (MBL2) (promoter [G→C] at -221 and codon 52 (Arg52Cys, D allele), 54 (Gly54Asp, B allele), and 57 (Gly57Glu, C allele), and pulmonary surfactant genes SPA-1 (Arg219Trp), SPA-2 (Thr9Asn, Lys223Gln) and SPD (Thr11Met), 3) antioxidant genes GSTM1 and T1 (gene deletion polymorphisms), GSTP1 (Ile105Val) and GCLC repeats, 4) mucin genes (MUC2 and MUC5B). Pulmonary disease progression and survival in patients with chronic Burkholderia cepacia complex (BCC) infection were also investigated controlling for genomovar and RAPD type of the organism. BCC infection was associated with more severe pulmonary disease progression and worse survival. Alpha-1-AT genotype was not a major contributor to variability of pulmonary disease severity, but the results suggest that alpha-1-AT plasma levels during pulmonary infections may be affected by poor nutritional status. We showed similar pulmonary disease progression and MBL2 genotype. Contrary to the previous literature, wild-type MBL2 genotype was associated with steeper decline in pulmonary disease over time following chronic infection with BCC, but genotype was not associated with increased susceptibility to BCC infection. We showed inconsistant results for the pulmonary surfactant gene polymorphisms, GSTM1, T1 and GSTP1 polymorphisms, and number of repeats for GCLC and MUC5B depending on the phenotype investigated. We conclude that some of the variability in pulmonary disease severity and progression in CF is explained by polymorphisms in secondary genes. / Medicine, Faculty of / Medicine, Department of / Experimental Medicine, Division of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/527 |
Date | 05 1900 |
Creators | Frangolias, Despina Daisy |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Format | 1848626 bytes, application/pdf |
Rights | Attribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Page generated in 0.003 seconds