Circadianes und Stress-System sind zwei physiologische Systeme, die dem Organismus helfen sich an Veränderungen ihrer Umwelt anzupassen. Während letzteres spontane und schnelle Antworten auf akute, unvorhersehbare Umweltreize liefert, sagt das circadiane System täglich wiederkehrende Ereignisse vorher and bereitet den Organismus so vorzeitig auf diese nahende Umweltveränderung vor. Dennoch, trotz dieser unterschiedlichen Reaktionsmechanismen agieren beide Systeme nicht komplett autonom. Studien der vergangen Jahre belegen vielmehr eine Interaktion beider Systeme. So postulieren sie zum einem Unterschiede in der Stressantwort in Abhängigkeit von der Tageszeit zu der der Reiz auftritt und weisen zugleich auf eine Zunahme von gestörten biologischen Tagesrhythmen, wie zum Beispiel Schlafstörungen, in Folge von unkontrollierten oder exzessiven Stress hin. Ebenso liefern kürzlich durchgeführte Studien an Vertebraten und Pilzen Hinweise, dass mit p38, eine Stress-aktivierte Kinase, an der Signalweiterleitung zur inneren Uhr beteiligt ist (Hayashi et al., 2003), sogar durch dieses endogene Zeitmesssystem reguliert wird (Vitalini et al., 2007; Lamb et al., 2011) und deuten damit erstmals eine mögliche Verbindung zwischen Stress-induzierten und regulären rhythmischen Anpassungen des Organismus an Umweltveränderungen an. Molekulare und zelluläre Mechanismen dieser Verknüpfung sind bisher noch nicht bekannt.
Während die Rolle von p38 MAPK bei der Stress- und Immunantwort in Drosophila melanogaster gut charakterisiert ist, wurden Expression und Funktion von p38 in der inneren Uhr hingegen bislang nicht untersucht. Die hier vorliegende Arbeit hatte daher zum Ziel mittels immunhistochemischer, verhaltensphysiologischer und molekularer Methoden eine mögliche Rolle der Stress-aktivierten Kinase im circadianen System der Fliege aufzudecken. Antikörperfärbungen sowie Studien mit Reporterlinien zeigen deutliche Färbesignale in den s-LNv, l-LNv und DN1a und erbringen erstmals einen Nachweis für p38 Expression in den Uhrneuronen der Fliege. Ebenso scheint die Aktivität von p38 MAPK in den DN1a uhrgesteuert zu sein. So liegt p38 vermehrt in seiner aktiven Form in der Dunkelphase vor und zeigt, neben seiner circadian regulierten Aktivierung, zusätzlich auch eine Inaktivierung durch Licht. 15-Minuten-Lichtpulse in der subjektiven Nacht führen zu einer signifikanten Reduktion von aktivierter, phosphorylierter p38 MAPK in den DN1a von Canton S Wildtypfliegen im Vergleich zu Fliegen ohne Lichtpuls-Behandlung. Aufzeichnungen der Lokomotoraktivität offenbaren zusätzlich die Notwendigkeit von p38 MAPK für wildtypisches Timing der Abendaktivität sowie zum Erhalt von 24-Stunden-Verhaltensrhythmen unter konstanten Dauerdunkel-Bedindungen. So zeigen Fliegen mit reduzierten p38 Level in Uhrneuronen einen verzögerten Beginn der Abendaktivität und stark verlängerte Freilaufperioden. In Übereinstimmung mit Effekten auf das Laufverhalten scheint darüber hinaus die Expression einer dominant-negativen Form von p38b in Drosophila’s wichtigsten Uhrneuronen eine verspätete nukleäre Translokation von Period zur Folge zu haben. Westernblots legen zusätzlich einen Einfluss von p38 auf den Phosphorylierungsgrad von Period nahe und liefern damit einen mögliche Erklärung für den verspäteten Kerneintritt des Uhrproteins. Abschließende Stützung der Westernblotergebnisse bringen in vitro Kinasenassays und deuten auf p38 als eine potentielle „Uhrkinase“ hin, welche auch in vivo Period an Serin 661 sowie weiteren potentiellen Phosphorylierungsstellen phosphorylieren könnte.
Zusammengenommen deuten die Ergebnisse der hier vorliegenden Arbeit eindeutig auf eine bedeutende Rolle von p38, neben dessen Funkion im Stress-System, auch im circadianen System der Fliege hin und offenbaren damit die Möglichkeit, dass p38 als Schnittstelle zwischen beider Systeme fungiert. / The circadian and the stress system are two distinct physiological systems that help the organism to adapt to environmental challenges. While the latter elicits reactive responses to acute environmental changes, the circadian system predicts daily occurring alterations and prepares the organism in advance. However, despite of these differences both responses are not mutually exclusive. Studies in the last years obviously prove a strong interaction between both systems showing a strong time-related stress response depending on the time of day of stressor presentation on the one hand and increased disturbances of daily rhythms, like sleep disorders, in consequence of uncontrolled or excessive stress on the other. In line with this fact, recent studies in vertebrates and fungi indicate that p38, a stress-activated Kinase, is involved in signaling to the circadian clock (Hayashi et al., 2003) and in turn is additionally regulated by this timekeeping system (Vitalini et al., 2007; Lamb et al., 2011) providing an interesting link between stress-induced and regularly rhythmic adaptations of the organism to environmental changes. However, little is known about molecular and cellular mechanisms of this interconnection.
In Drosophila melanogaster the role of p38 MAPK is well characterized in terms of immune and stress response, p38 expression and function in the circadian clock has not been reported so far. Therefore, the present thesis aimed to elucidate a putative role of the stress-activated Kinase in the fly’s circadian system using an immunohistochemical, behavioral as well as molecular approach. Surprisingly, for the first time antibody as well as reporterline studies cleary prove p38 expression in Drosophila clock neurons showing visible staining in s-LNvs, l-LNvs and DN1as. Moreover p38 MAPK in DN1as seems to be activated in a clock-dependent manner. p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. 15 minutes light pulse applied during the dark phase lead to a significant reduction in phosphorylated and activated p38 MAPK in Canton S wildtype flies compared to flies without light pulse treatment. In addition, locomotor activity recordings reveal that p38 is essential for a wild-type timing of evening activity and for maintaining ~24h behavioral rhythms under constant darkness. Flies with reduced p38 activity in clock neurons show delayed evening activity onsets and drastically lengthened the period of their free-running rhythms. In line with these effects on locomotor behavior, the nuclear translocation of the clock protein Period is significantly delayed on the expression of a dominant-negative form of p38b in Drosophila’s most important clock neurons. Western Blots reveal that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays additionally confirm the Western Blot results and point to p38 as a potential “clock kinase” phosphorylating Period at Serin 661 and putative phosphorylation sites.
Taken together, the results of the present thesis clearly indicate a prominent role of p38 in the circadian system of the fly besides its function in stress-input pathways und open up the possibility of p38 MAPK being a nodal point of both physiological systems.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:12463 |
Date | January 2015 |
Creators | Dusik, Verena |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds