Let M Φ and Mψ be elements of PSL(2,C) representing orientation preserving isometries on the upper half-space model of hyperbolic 3-space Φ and ψ respectively. The parameters β = tr2(M Φ) - 4, β1 = tr2(Mψ) - 4, γ = tr[M Φ,Mψ] - 2, determine the discrete group (Φ ,ψ) uniquely up to conjugacy whenever γ ≠ 0. This thesis is concerned with explicitly lifting this parameterisation of (Φ , ψ) to PSO(1, 3) realised as a discrete 2 generator subgroup of orientation preserving isometries on the hyperboloid model of hyperbolic 3-space. We particularly focus on the case where both Φ and ψ are elliptic.
Identifer | oai:union.ndltd.org:ADTP/243162 |
Date | January 2008 |
Creators | Cooper, Haydn |
Publisher | Massey University |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Page generated in 0.002 seconds