Return to search

Using finite element structural analysis to study retroreflective raised pavement markers

This thesis investigates the stress inside Retroreflective Raised Pavement Markers
(RRPMs) under tire-marker impact and laboratory testing scenarios. Many RRPMs
have poor durability although they meet certain standards of the existing laboratory
tests. It has been suspected that the current testing procedures might not be adequate
to decide the field performance of RRPMs. Thus, it is necessary to evaluate the
existing laboratory testing procedures and develop additional ones that could simulate
the field performance of RRPMs more accurately.
The tire-marker impact on rigid and flexible pavement will be investigated to
identify the critical locations and magnitudes of stress inside markers during the impact.
Various external factors, such as tire loading, tire speed, contact angle and contact
location, might have effects on the stress inside markers during the impact and be
considered as critical factors when developing a laboratory test. On the other hand,
RRPMs have different profiles in terms of height, lens slope, and size etc, which affect
the structure and field performance as well. The study explores the stress inside
markers during the impact by varying the external factors and marker profile. In
addition, the interface forces between RRPMs and pavement surface will be studied.
Furthermore, the tire-marker impact simulation on rigid and flexible pavement will be
compared so that specific testing procedures can be distinguished based on pavement type. Finally, the existing laboratory tests will be examined and additional tests be
recommended based on the tire-marker impact analysis.
The researcher found that the critical compressive stress is produced at the top
edges of the markers on both types of pavement, while the patterns of critical tensile
stress can be different between the two types of pavement. In addition, tire loading
and contact location were determined to have effect on the stress inside the markers.
Furthermore, different loading rates should be used in laboratory test based on
pavement type. Finally, the researcher evaluated four laboratory tests and found that
each test has its merit but none of them can test RRPMs comprehensively, so it is
recommended that the four tests are used together to test RRPMs.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-1913
Date02 June 2009
CreatorsTong, Jiaxin
ContributorsZhang, Yunlong
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Formatelectronic, application/pdf, born digital

Page generated in 0.0016 seconds