Return to search

Caracterização da estrutura de dependência do genoma humano usando campos markovianos: estudo de populações mundiais e dados de SNPs / Characterization of the human genome dependence structure using Markov random fields: populations worldwide study and SNP data

A identificação de regiões cromossômicas, ou blocos de dependência dentro do genoma humano, que são transmitidas em conjunto para seus descendentes (haplótipos) tem sido um desafio e alvo de várias iniciativas de pesquisa, muitas delas utilizando dados de plataformas de marcadores moleculares do tipo SNP (Single Nucleotide Polymorphisms - SNPs), com alta densidade dentro do DNA humano. Este trabalho faz uso de uma modelagem estocástica de campos Markovianos de alcance variável, em uma amostra estratificada de diferentes populações, para encontrar blocos de SNPs, independentes entre si, estruturando assim o genoma em regiões ilhadas de dependência. Foram utilizados dados públicos de SNPs de diferentes populações mundiais (projeto HapMap), além de uma amostra da população brasileira. As regiões de dependência configuram janelas de influência as quais foram usadas para caracterizar as diferentes populações de acordo com sua ancestralidade e os resultados obtidos mostraram que as janelas da população brasileira têm, em média, tamanho maior, evidenciando a sua história recente de miscigenação. É também proposta uma otimização da função de verossimilhança do problema para obter as janelas de consenso maximais de todas as populações. Dada uma determinada janela de consenso, uma medida de distância apropriada para variáveis categóricas, é adotada para medir sua homogeneidade/heterogeneidade. Janelas homogêneas foram identificadas na região HLA (Human Leukocyte Antigen) do genoma, a qual está associada à resposta imunológica. O tamanho médio dessas janelas foi maior do que a média encontrada no restante do cromossomo, confirmando a alta dependência existente nesta região, considerada como bastante conservada na evolução humana. Finalmente, considerando a distribuição dos SNPs entre as populações nas janelas mais heterogêneas, a Análise de Correspondência foi aplicada na construção de um classificador capaz de determinar o percentual relativo de ancestralidade de um indivíduo, o qual, submetido à validação, obteve uma eficiência de 90% de acerto da população originária. / The identification of chromosome regions, or dependency blocks in the human genome, that are transmitted together to offspring (haploids) has been a challenge and object of several research initiatives, many of them using platforms of molecular markers such as SNP (Single Nucleotide Polymorphisms), with high density inside the human DNA. This work makes use of a stochastic modeling of Markov random fields, in a stratified sample of different populations, to find SNPs blocks, independent of each other, thus structuring the genome in stranded regions of dependency. Public data from different worldwide populations were used (HapMap project), beyond a Brazilian population. The dependence regions constitute windows of influence which were used to characterize the different populations according of their ancestry and the results showed that the Brazilian populations windows have, on average, a bigger size, showing their recent history of admixture. It is also proposed an optimization of likelihood function of the problem for the maximal windows of consensus from all populations. Given a particular window of consensus, a distance measure appropriated to categorical variables, it is adopted to evaluate its homogeneity/heterogeneity. Homogeneous windows were identified within region of genome called HLA (Human Leukocyte Antigen), which is associated with the immune response. The average size of these windows was bigger than the average found in the rest of the chromosome, confirming the high dependence verified in this region, considered highly conserved in the human evolution. Finally, considering the distribution of the SNPs among the populations in the most heterogeneous windows, the Correspondence Analysis was applied to build a classifier able to determine, for a given individual, the ancestry proportion from each population considered, which, submitted to a validation, obtained a 90% accuracy of the original population.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-23032016-134721
Date01 February 2016
CreatorsFernandes, Francisco José de Almeida
ContributorsSoler, Julia Maria Pavan
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0023 seconds