Les modèles développés afin de prédire le comportement des Alliages à Mémoire de Forme (AMF) sont généralement basés sur une description phénoménologique simplifiée de l’activation des variantes de martensite sous chargement thermomécanique. Cette étude a pour objectif de modéliser et de caractériser par nanoindentation la formation discrète des plaquettes de martensite à l’échelle nanométrique. Un nouveau critère, nommé critère de Patel-Cohen d’indentation, est proposé afin de décrire l’activation de la première variante de martensite sous l’indent et sa transformation inverse. L’évidence de transformation martensitique est observée sur les courbes d’indentation par l’apparition successive d’évènements de type « pop in » et « pop out » lors, respectivement, de la charge et de la décharge. Cela met en évidence la discontinuité spatio-temporelle de l’activation et de la propagation de la transformation martensitique à l’échelle nanométrique. L’émission de dislocations dans le nickel pur a été étudiée en tout premier lieu afin de valider et la procédure de nanoindentation utilisant un indent Berkovich et le calcul des facteurs de Schmid d’indentation décrivant l’activation de « pop ins » correspondant à l’activation et à la propagation de dislocations. Un bon accord est trouvé entre les essais réalisés sur un AMF CuAlBe superélastique et la dépendance théorique à l’orientation cristallographique des charges de « pop-ins » et de « pop outs » prédite par le critère de Patel-Cohen d’indentation introduit dans cette étude / Constitutive models developed to predict Shape Memory Alloys (SMA) behavior are often based on a simplified phenomenological description of martensite variant activation under thermomechanical loading at the micro scale. This study aims at modeling and characterizing by nanoindentation the discrete variant activation events at the nano scale. A new criterion is proposed to describe the first martensite variant activation beneath the indenter. Evidence of discrete martensitic transformation is observed during nanoindentation by the successive occurrences of pop-in and pop-out load events on the force versus displacement curve during respectively loading and unloading. Thus, the spatial-temporal discontinuity of phase transformation activation and propagation is highlighted at the nano scale with the introduction of an indentation Patel-Cohen factor for both forward austenite-martensite and reverse phase transformations. Dislocation emission in pure nickel is first studied to validate both the nanoindentation testing procedure using a Berkovich indenter and the calculations of indentation Schmid factors to describe excursion bursts corresponding to dislocation activation and propagation. Good agreement is found between nanoindentation tests performed on a superelastic CuAlBe SMA and theoretical crystallographic dependence of pop-in and pop-out loads predicted by the new introduced indentation Patel and Cohen factor
Identifer | oai:union.ndltd.org:theses.fr/2013LORR0363 |
Date | 09 December 2013 |
Creators | Caër, Célia |
Contributors | Université de Lorraine, Patoor, Etienne, Lecomte, Jean-Sébastien, Berbenni, Stéphane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0126 seconds